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ABSTRACT

As third-party cookie blocking is becoming the norm in mainstream

web browsers, advertisers and trackers have started to use �rst-

party cookies for tracking. To understand this phenomenon, we

conduct a di�erential measurement study with versus without third-

party cookies. We �nd that �rst-party cookies are used to store

and ex�ltrate identi�ers to known trackers even when third-party

cookies are blocked.

As opposed to third-party cookie blocking, �rst-party cookie

blocking is not practical because it would result in major breakage

of website functionality. We propose CookieGraph, a machine

learning-based approach that can accurately and robustly detect and

block �rst-party tracking cookies. CookieGraph detects �rst-party

tracking cookies with 90.18% accuracy, outperforming the state-

of-the-art CookieBlock by 17.31%. We show that CookieGraph

is robust against cookie name manipulation, while CookieBlock’s

accuracy drops by 15.87%. While blocking all �rst-party cookies

results in major breakage on 32% of the sites with SSO logins, and

CookieBlock reduces it to 10%, we show that CookieGraph does

not cause any major breakage on these sites.

Our deployment of CookieGraph shows that �rst-party track-

ing cookies are used on 89.86% of the top-million websites. We �nd

that 96.61% of these �rst-party tracking cookies are in fact ghost-

written by third-party scripts embedded in the �rst-party context.

We also �nd evidence of �rst-party tracking cookies being set by

�ngerprinting scripts. The most prevalent �rst-party tracking cook-

ies are set by major advertising entities such as Google, Facebook,

and TikTok.
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1 INTRODUCTION

Major browser vendors such as Safari, Firefox, and Google Chrome

have either blocked or are in the process of blocking third-party

cookies — cookies set on domains that di�er from the domain of the

site visited by a user [25, 82, 91]. Because third-party cookies are

accessible across di�erent sites that a user visits, they are used for

cross-site tracking (i.e., linking a user’s browsing activity across

di�erent sites). Due to their ubiquitous use in tracking, the question

arises as to how trackers will respond to third-party cookie blocking.

First-party cookies — cookies that are set on the same domain as

that being visited by a user – are of particular interest to advertisers

and trackers because they will still be available in the face of third-

party cookie blocking. However, since �rst-party cookies are only

accessible from the setting domain, it remains to be seen how they

can be used in lieu of third-party cookies for cross-site tracking.

Prior literature has shown that �rst-party cookies set by third-

party scripts can be ex�ltrated to tracking endpoints [44, 54, 77].

Prior work has also shown that trackers use browser �ngerprinting

to re-spawn �rst-party cookies [55]. Yet, there is no work studying

the full spectrum of tracking possible through �rst-party cookies;

and crucially, no countermeasures exist to speci�cally detect and

block �rst-party tracking cookies. To �ll this gap, we �rst inves-

tigate the use of �rst-party cookies by known trackers and then

use our �ndings to develop a machine-learning based approach,

CookieGraph, to detect and block �rst-party tracking cookies.

We �rst perform a di�erential measurement study comparing

the use of �rst- and third-party cookies on a 20% sample of top-

million websites across parallel crawls, with third-party cookies

enabled and blocked. We show that third-party cookie blocking

does not signi�cantly impact the sharing of identi�ers to known
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tracking endpoints because major trackers are already using �rst-

party cookies. Our analysis reveals that these trackers store identi-

�ers in �rst-party cookies based on probabilistic and deterministic

information.

Unlike third-party cookies, blocking all �rst-party cookies is

not practical, as some of these cookies might be required for le-

gitimate website functionality. An alternative could be the use of

privacy-enhancing request blocking tools [62, 79, 80] that would

also block the cookies set by the requested resources. Unfortunately,

our evaluation shows that these tools also cause breakage because

tracking cookies are often set by domains that also set functional

cookies. Researchers have recently started to develop approaches to

detect and block (both �rst-party and third-party) tracking cookies

[42, 59]. However, these approaches rely on content-based features

such as cookie names and values, which can lead to a high number

of false positives (and consequently major website breakage) while

also being susceptible to evasion [79].

To address these limitations, we design and implement Cook-

ieGraph, a machine-learning approach to speci�cally detect �rst-

party tracking cookies. Instead of using content-based features,

CookieGraph attempts to capture fundamental tracking behaviors

exhibited by �rst-party cookies that we discover in our di�eren-

tial measurement study. CookieGraph is able to detect �rst-party

tracking cookies with 90.18% accuracy, outperforming the state-of-

the-art CookieBlock [42] by 17.31%. We also show that blocking all

�rst-party cookies results in major breakage on 32% of the sites with

SSO logins, which is improved to 10% by CookieBlock. In contrast,

CookieGraph does not cause any major breakage on these sites.

Moreover, CookieGraph is robust to evasion through cookie name

manipulation, while CookieBlock’s accuracy degrades by 15.87%.

We deploy CookieGraph on a 20% sample of the top-million

websites to �nd 108,947 �rst-party tracking cookies on 89.86% of the

websites. The most prevalent �rst-party tracking cookies are set by

major advertising entities, such as Google, Facebook, and TikTok,

and then ex�ltrated to a large number of other advertising and

tracking endpoints. We �nd that 96.61% of the �rst-party tracking

cookies are in fact ghostwritten by third-party scripts, 223 of which

also conduct �ngerprinting, that are served from a total of 2,099

distinct third-party domains.

In summary, our key contributions are as follows:

(1) We conduct a large-scale di�erentialmeasurement study

to understand the usage of �rst-party cookies by trackers

when third-party cookies are blocked. Our analysis shows

that blocking third-party cookies does not reduce the num-

ber of tracking requests containing identi�ers and provides

evidence that trackers already use �rst-party cookies in lieu

of third-party cookies for tracking.

(2) We introduce CookieGraph, a machine-learning based

countermeasure to detect and block �rst-party tracking

cookies. CookieGraph captures fundamental tracking be-

haviors of �rst-party cookies that.CookieGraphoutperforms

the state-of-the-art in terms of accuracy, robustness, and

breakage minimization.

(3) We deploy CookieGraph on a 20% sample of the top-

million websites to measure the prevalence of �rst-party

tracking cookies. We detect a total of 2,099 distinct domains

that set �rst-party tracking cookies, including major adver-

tising entities such as Google, and show that �ngerprinting

scripts set �rst-party cookies on 1,908 sites.

Paper Organization: The rest of this paper is organized as follows:

Section 2 provides an overview of the recent developments and

related work on cookies. Section 3 describes the threat model of

�rst-party cookies. Section 4 presents our di�erential measurement

study to evaluate the impact of third-party cookie blocking on the

use of �rst-party cookies by trackers. Section 5 describes the design

and evaluation of CookieGraph. Section 6 presents results from

our deployment of CookieGraph. We discuss the limitations of

CookieGraph in Section 7 and conclude in Section 8.

2 BACKGROUND & RELATEDWORK

2.1 Adoption of third-party cookies for tracking

Cookies were originally designed to recognize returning users, e.g.,

to maintain virtual shopping carts [70]. Soon, they were adopted by

third-parties to track users across websites and serve targeted ads

[7]. Early standardization e�orts focused on limiting unintended

cookie sharing across domains [47] and, despite well-known privacy

concerns [1], largely ignored the misuse of cookies by third-parties

for cross-site tracking. Over the years, the use of third-party cookies

for cross-site tracking has become prevalent [43, 48, 76, 77]. Prior

research shows that the vast majority of third-party cookies are

set by advertising and tracking services (ATS) [48] and third-party

cookies outnumber �rst-party cookies by a factor of two [43] – and

up to four when they contain identi�ers [77].

2.2 Countermeasures against third-party
cookies

2.2.1 Safari. Since its inception in 2003, Safari has blocked third-

party cookies from domains that have not been visited by the user

as full-�edged websites [84]. In 2017, Safari introduced Intelligent

Tracking Prevention (ITP). ITP uses machine learning to automat-

ically detect third-party trackers. It revoked storage access from

classi�ed domains if users did not interact with them on a daily

basis [85]. Since 2017, ITP went through several iterations, i.e., ITP

1.1 [86], ITP 2.0 [87], ITP 2.1 [88], ITP 2.2 [89] and ITP 2.3 [90],

eventually leading to full third-party cookie blocking [91].

2.2.2 Firefox. Firefox experimented with third-party cookie block-

ing in 2013 [50, 51], but did not ship default-on third-party cookie

blocking until the release of Enhanced Tracking Protection (ETP)

in 2018 [71]. ETP blocks third-party cookies based on a blocklist

of trackers provided by Disconnect [6]. As of 2022, Firefox has

launched Total Cookie Protection (TPC) which partitions all third-

party cookie access [25]. Partitioning ensures that cookies set by

a third party on one site are distinct from those set by the same

third-party on other websites, eliminating the third party’s ability

to track users across those websites.

2.2.3 Internet Explorer and Microso� Edge. Amongst the main-

stream browsers that have deployed countermeasures against third-

party cookies, Internet Explorer (IE) and Microsoft Edge have the

most permissive protections. IE blocked third-party cookies from

domains that did not specify their cookie usage policy with the
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P3P response header [2]. However, website owners often misrepre-

sented their own cookie usage policies, which rendered P3P ine�ec-

tive [68]. Since 2019, Microsoft Edge has blocked access to cookies

and storage in a third-party context from some trackers, based on

Disconnect’s tracking protection list [6, 15, 82].

2.2.4 Chrome. Google Chrome is the only mainstream browser

that does not restrict third-party cookies in any way in its default

mode. In 2020, Google announced plans to phase out third-party

cookies in Chrome by 2022 [78]. However, the plan has been post-

poned several times and the latest timeline suggests the phasing

out of cookies by late 2024 [56].

2.3 Adoption of �rst-party cookies for tracking

While third-party cookies are widely considered as the main mech-

anism for cross-site tracking, trackers have also relied on �rst-party

cookies for various forms of tracking, as described below.

Same-site tracking.As early as 2012, Roesner et al. [76], noted that

third-party tracking scripts, embedded on the main webpage (i.e.,

in �rst-party context), set �rst-party cookies. First-party cookies

enable same-site tracking, where trackers can determine whether

a user is revisiting a website or internal pages of a site. While

not as invasive as tracking users across di�erent sites, signi�cant

information about a user can be gleaned from tracking their activity

on the sites they frequent (e.g., a social media or news site).

Cross-domain same-site tracking. First-party cookies can also be

used for cross-domain same-site tracking, where a website’s cookies

are shared by trackers to other domains. In 2020, Fouad et al. [54]

found that trackers sync �rst-party cookies to several third-parties

on as many as 67.96% of the websites they tested. In 2021, Chen et al.

[44] found that more than 90% of the websites contain at least one

�rst-party cookie that is set by a third-party script. Similar to Fouad

et al., they found that at least one �rst-party cookie is ex�ltrated to a

third-party domain on more than half of the tested websites, raising

concerns that these cookies might be used for tracking. Sanchez et

al. [77] echoed these concerns, uncovering several instances where

�rst-party cookies were ghostwritten by third-parties and then

ex�ltrated to other third-parties. They conclude, through a large-

scale measurement study of top websites and multiple case studies,

that even after blocking third-party cookies, users are still at risk

of �rst-party cookie based tracking.

Cross-domain sharing of �rst-party cookies presents a bigger

privacy issue for users than same-site tracking. While same-site

tracking is only restricted to domains that are able to set �rst-party

cookies, cross-domain sharing of �rst-party cookies allows other

trackers, which are not collaborating with the �rst-party domains,

to receive information about user activity. This simpli�es operations

for trackers as instead of collaborating with each di�erent publisher

to set �rst-party cookies, they can instead leverage tracking cookies

set by another tracker to monitor user activity. With this practice,

not only the third-party domains that are setting �rst-party cookies

can track users’ activities on the site, but tracking is also extended

to other domains that receive these �rst-party cookies.

Cross-site tracking. While third-party cookies have been used

extensively in cross-site tracking, i.e., where a tracker links a user’s

activity across sites, the mechanisms by which �rst-party cookies

are used in cross-site tracking have not been studied so far. Oh et

al. [72] investigated the sharing of �rst-party data with trackers

in lieu of third-party cookie blockage, determining that identi�ers

such as email addresses were also shared to popular trackers. Their

experiments show that trackers make use of identi�ers like email

addresses to link user activity across di�erent sites. They make

use of this knowledge to perform identity entanglement, where an

attacker can make use of an email address or other identi�ers to

in�uence the advertisements shown to a victim. This sharing of

additional information when third-party cookies are blocked allows

trackers to track users across di�erent sites.

Previous research has also shown that it is non-trivial to generate

�rst-party identi�ers that are accessible across websites. Prior re-

search has found that trackers often leverage browser �ngerprinting

to generate �rst-party tracking cookies [55]. Browser �ngerprint-

ing provides unique identi�ers that are accessible across websites

but drift over time [65]. However, identi�ers generated through

browser �ngerprinting can be stored in cookies that persist even

after �ngerprints change. In addition to browser �ngerprinting, sev-

eral advertising and tracking services, such as Google Ad Manager

[20] and ID5 [29], specify in their documentation that they also use

publisher-provided identi�ers (PPIDs), such as email addresses, to

set �rst-party cookies.

We note that techniques such as CNAME cloaking also allow

advertisers and trackers to use �rst-party cookies. However, as

prior work has extensively studied �rst-party cookie leaks due to

CNAME cloaking, we do not focus on CNAME cloaking in this

paper.

2.4 Countermeasures against �rst-party cookies

2.4.1 Deployed countermeasures. Safari is the only mainstream

browser that has deployed protections against �rst-party tracking

cookies. Safari’s ITP expires �rst-party cookies and storage set

by scripts in 7 days if users do not interact with the website [84].

This limit is lowered to 24 hours if ITP detects link decoration

being used for tracking [84]. However, �rst-party cookie tracking

does not require link decoration to be e�ective. In cases where

link decoration is not used, trackers can still track users within the

7-day window and beyond if users interact with the website within

the 7-day window.

2.4.2 Countermeasures proposed by prior research. There exist two

machine-learning based approaches to detect tracking cookies. Hu

et al. [59]’s approach uses sub-strings in cookie names (e.g., track,

GDPR) as features to detect �rst-party and third-party tracking

cookies. Bollinger et al. [42] proposed CookieBlock. CookieBlock

uses several cookie attributes such as the domain name of the

setter, cookie name, path, value, expiration, etc. as features to detect

�rst-party and third-party tracking cookies. These approaches rely

on hard-coded content features, which makes them susceptible to

adversarial evasions (as we show later in Section 5.5.3). Moreover,

these approaches mainly rely on self-disclosed cookie labels as

ground truth, which can be unreliable [83].

2.4.3 Request blocking approaches. Request blocking through browser

extensions, such as Adblock Plus [3], and machine-learning-based

tracker detection approaches proposed by prior research, e.g., [79],
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can block �rst-party cookies set by tracking requests. However, re-

quest blocking is prone to cause breakage because it blocks access to

content or cookies that might be essential for website functionality.

We con�rm this is the case in Section 5.5.3)

Unique focus of this paper. Prior work has only incidentally

measured the usage of �rst-party tracking cookies, and existing

approaches to detect �rst-party tracking cookies are lacking. In

this paper, we �ll this void by conducting a large-scale study to

measure the prevalence of �rst-party tracking cookies and develop

an accurate and robust machine-learning approach, CookieGraph,

aimed at detecting �rst-party cookies.

3 THREAT MODEL

In this section, we describe the threat model of tracking via �rst-

party cookies.1

First- vs third-party cookies. Before describing the threat model, we

de�ne what we mean by �rst- and third-party cookies. Cookies can

either be set by the Set-Cookie HTTP response header or by using

document.cookie in JavaScript. Cookies set via response header

from the same domain as the �rst-party are �rst-party cookies.

Similarly, cookies set via response header from a di�erent domain

than the �rst-party are third-party cookies. When cookies are set

by a script, their classi�cation depends on whether the script is

embedded in a �rst- or third-party execution context. The cookies

set by third-party scripts running in the �rst-party context are �rst-

party cookies. The cookies set by third-party scripts running in a

third-party context (e.g., third-party iframes) are third-party cookies.

There are three main entities in this threat model: users (the victim),

trackers (the adversary), and publishers.

We assume that the user:

• visits di�erent websites using one or more desktop/mobile

devices that have distinct �ngerprints [64]

• is not averse to logging in to those websites and providing PII

(personally identi�able information) such as email addresses

• has third-party cookies disabled and �rst-party cookies en-

abled

We assume that the publisher:

• controls the content on the site being visited by the user

• embeds the tracker in the �rst-party context, allowing the

tracker to set �rst-party cookies

• shares email and other deterministic identi�ers (e.g., user-

name, phone number) with the tracker, if provided by the

user

We assume that the tracker:

• is present in a �rst-party context on the publisher’s site

• can set and read �rst-party cookies using document.cookie

• can collect information such as IP addresses, screen resolu-

tion etc., which can be used to construct a device �ngerprint

Trackers can use the information shared by the publisher, and

the �ngerprints collected by their own scripts to perform same-site,

cross-domain same-site, and cross-site tracking, described below:

1This threat model is informed by prior literature [44, 54, 55, 72, 77] and our case
studies of popular tracking services described in Appendix A.1
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UID

F + PPID

UID

PPIDF

F + 
PPID

PPID
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Figure 1: Cross-site tracking. The �ow of information and

identi�ers through an identity graph for cross-site tracking.

Initially, the user visits publishers 1 and 2 from one device.

Tracker A, on publishers 1 and 2, collects and sends �nger-

print � to the identity graph. The identity graph returns a

* �� for all the publisher visits, by matching �ngerprints

sent by each respective publisher. A publisher-provided ID,

%%�� , is also sent when visiting publisher 2. The user visits

publisher 3 on a di�erent device, thus tracker A is unable to

construct a �ngerprint that matches � . Publisher 3 sends a

publisher-provided ID that matches %%�� provided by pub-

lisher 2. As a result, the identity graph matches and returns

the same * �� for publisher 3. This ID is stored in �rst-party

cookies on the user’s device for each respective publisher.

Same-site tracking.A user visits the same publisher’s site multiple

times. During the �rst visit of the user, tracker A sets a �rst-party

cookie on the user’s device. Upon subsequent visits by the user,

tracker A can read the �rst-party cookie set and know that it is the

same user who is revisiting the site. When performing same-site

tracking, tracker A is able to gather information about the user

across the pages maintained by the same publisher.

Same-site cross-domain tracking. After setting a �rst-party

cookie on a user’s device, tracker A also shares the �rst-party

cookie with a di�erent tracker B that is not present in the �rst-

party context (and thus is unable to set a �rst-party cookie of its

own). On each subsequent visit of the user, tracker A shares the

�rst-party cookie and the pages visited by the user with tracker B.

Thus, without setting its own �rst-party cookie and directly col-

luding with the publisher, tracker B is also able to track the user’s

activity on the same site.

Cross-site tracking. Consider a scenario in which a user visits

three di�erent sites (publishers 1, 2, 3) where tracker A is embed-

ded in the �rst-party context. The user visits sites 1 and 2 on one

device and site 3 on a di�erent device. Publishers 2 and 3 ask the

user for a deterministic identi�er (e.g., email address) which we

denote as %%�� (Publisher-Provided ID). Tracker A also constructs

�ngerprints on sites 1 and 2, denoted by �8 , where 8 denotes the

publisher visited.

When the user visits sites 1 and 2, tracker A collects �ngerprints

�1 and �2, which are the same (i.e., �1 = �2 = � ) as they are all

constructed for the same device. This allows tracker A to infer

that the same user/device is visiting both sites. Tracker A links the

deterministic identi�ers and �ngerprints belonging to the same

user/device by constructing an identity graph (refer to Appendix

A.1 for examples). The gray edge in Figure 1 shows the link in the
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identity graph constructed by tracker A for the �ngerprints on sites

1 and 2.

The user then visits site 3 from a di�erent device where tracker

A is not able to construct the same �ngerprint � . Publisher 3 asks

the user for a deterministic identi�er (e.g., email address), which is

the same as the %%�� provided by the user to publisher 2. Based

on this additional information, tracker A can add a black edge to

the identity graph.

Tracker A is �nally able to connect all nodes in the identity

graph to the user. Tracker A then assigns all connected nodes in the

identity graph the same ID * �� , which it can store in a �rst-party

cookie on each of the sites. On each subsequent visit by the user

to any of the sites, tracker A can now simply read the �rst-party

cookie containing * �� . Because * �� is the same across sites 1, 2,

and 3, this allows tracker A to track the user across di�erent sites.

4 MEASUREMENTS

In this section, we conduct a preliminary measurement study to

investigate the usage of �rst-party cookies by advertising and track-

ing services (ATS) when third-party cookies are blocked.

4.1 Data Collection

Data collection. We use OpenWPM (v0.17.0) and Firefox (v102)

[52] to crawl a sample of 20K out of the top-million websites. To

ensure that our crawls cover websites of variable popularity, we

crawl the top 1K sites – ensuring coverage of the most popular

websites– uniformly sample 9K sites from the sites ranked 1K-100K,

and another 10K from sites ranked 100k-1M in the Tranco list

[74]. To capture behaviors that may be di�erent in the landing and

internal pages of a website [40], we perform an interactive crawl

that covers both kinds of pages. Speci�cally, for each site, we crawl

its landing page and then select up to 20 internal pages to visit

at random. We conduct four parallel crawls: two with third-party

cookies enabled (3P-Allowed) and two with third-party cookies

blocked (3P-Blocked). Parallelizing the crawls minimizes temporal

variations across crawls and mitigates the e�ect of the dynamic

behavior of websites.

We run all crawls in the US to minimize the impact of the EU

GDPR and do not interact with cookie banners. We also turn o�

additional protections against tracking provided by Firefox [10].

We repeat failed crawls up to four times. We successfully conducted

the four parallel crawls for 99.31% of the 20K websites.

Labeling tracking activity. To label tracking, we use EasyList [8]

and EasyPrivacy [9]. Speci�cally, we use them to label requests as

tracking (ATS) or not tracking (Non-ATS). We label a request as

tracking (ATS) if its URL matches the rules in either one of the lists.

Otherwise, we label it as not tracking (Non-ATS).

Since the basic premise of tracking is to identify users, we are

particularly interested in sharing of identi�ers in these tracking

requests. In line with prior work [53, 63], we de�ne identi�ers as

a string that is longer than 8 characters and matches the regex

[0−I�−/0− 9_ = −]. Using this de�nition, we look for identi�ers

in URL query parameters [75] and cookie values [43, 44, 49, 77].

4.2 Tracking When Third-Party Cookies Are
Blocked

We �rst study whether blocking third-party cookies e�ectively elim-

inates ATS requests. We compare the number of requests containing

identi�ers with and without third-party cookies.

go
og
le
-a
na
ly
ti
cs
.c
om

do
ub
le
cl
ic
k.
ne
t

go
og
le
ta
gm

an
ag
er
.c
om

go
og
le
.c
om

go
og
le
sy
nd
ic
at
io
n.
co
m

pu
bm

at
ic
.c
om

ru
bi
co
np
ro
je
ct
.c
om

go
og
le
ad
se
rv
ic
es
.c
om

op
en
x.
ne
t

cr
it
eo
.c
om

0

10

20

30

40

50

60

%
o
f
S
it
e
s

Figure 2: Presence of top-10 tracking domains. The plot shows

the percentage of sites where at least one request containing

an identi�er is sent to a tracking domain.

( ) 3P-Allowed: Third-party cookies allowed

( ) 3P-Blocked: Third-party cookies blocked

Table 1 shows the average number of requests for two parallel

crawls conducted with third-party cookies allowed and blocked. We

see that there is only a modest reduction in the overall number of

ATS requests when third-party cookies are blocked. The di�erence

in the number of ATS requests containing identi�ers is 10.82%. This

is surprising because cookie syncing, which is widely used for same-

site-cross-domain and cross-site tracking [54, 73], entails sharing

third-party identi�er cookies in query parameters [43, 44, 49]. With

third-party cookies blocked, cookie syncing between third-parties

cannot occur, and we would expect to see a larger drop in identi�ers

shared in ATS requests. We conclude that third-party cookie

blocking does not e�ectively limit the ex�ltration of identi�ers

to trackers.

Table 1: Average number of requests per site in 3P-Allowed

and 3P-Blocked con�gurations

Request Count 3P-Allowed 3P-Blocked Change

Total 771.47 766.43 -0.65%

Tracking 303.46 288.08 -5.07%

Non-Tracking 468.01 478.35 2.21%

Tracking with ID 126.43 112.75 -10.82%

Tracking without ID 177.02 175.32 -0.96%
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Table 2: Average number of �rst-party cookies per site in

3P-Allowed and 3P-Blocked con�gurations

1P Cookie Count 3P-Allowed 3P-Blocked Change

Total 132.65 137.73 -3.84%

Set by Trackers 109.74 114.53 -4.36%

Set by Non-Trackers 22.90 23.20 -1.31%

Set by Trackers with ID 64.09 66.37 -3.55%

Set by Trackers without ID 45.64 48.15 -5.50%
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Figure 3: Comparison of percentage of sites on which �rst-

party and third-party identi�er cookies are set by ATS do-

mains.

( ) �rst-party identi�er cookies set when third-party cook-

ies are allowed

( ) �rst-party identi�er cookies set when third-party cook-

ies are blocked

( ) third-party identi�er cookies set when third-party

cookies are allowed

Next, we analyzewhether third-party cookie blocking disparately

impacts di�erent ATS domains (eTLD+1). Figure 2 plots the percent-

age of sites with at least one ATS request with identi�ers. Six of the

top-10 ATS domains, all owned by Google, show only a negligible

reduction in the number of ATS requests with identi�ers when

third-party cookies are blocked. In contrast, three other ATS do-

mains, owned by Pubmatic, Rubicon, and OpenX, show a signi�cant

reduction.

4.3 Tracking Through First-Party Cookies

Table 1 shows that even after blocking third-party cookies, there

is only a small decrease in ATS requests containing identi�ers

(10.82%). The identi�ers in these ATS requests are likely originat-

ing from some storage mechanism other than third-party cookies.

Since recent prior work has shown that ATS are increasingly using

�rst-party cookies [44, 77], we next investigate whether �rst-party

cookies are being used in lieu of third-party cookies to circumvent

third-party cookie blockage.

We �rst compare the average number of �rst-party cookies in

3P-Allowed and 3P-Blocked crawls in Table 2. We observe only a

minor di�erence in the average number of �rst-party cookies set

with third-party cookies allowed/blocked. It is also noteworthy that

83.15% of the �rst-party cookies are set by ATS scripts. A further

57.94% of them are identi�er cookies. We conclude that the vast

majority of �rst-party cookies are in fact set by ATS and that they

are not signi�cantly impacted by third-party cookie blocking.

Next, we compare the setting of �rst- and third-party identi�er

cookies by ATS domains (eTLD+1 of the setting script URL) to

understand if �rst-party cookie usage is equally prevalent across

di�erent ATSes. Figure 3 plots the percentage of sites where at least

one �rst-party and/or third-party identi�er cookie is set by a top-10

ATS domain.

For the six Google-owned ATS domains, which showed a neg-

ligible di�erence in requests containing identi�ers after blocking

third-party cookies, there is also little to no change in the use of

�rst-party identi�er cookies across both crawls. These domains

do not set a large number of third-party identi�er cookies, even

when those are allowed, which likely explains why they were not

impacted by third-party cookie blocking.

On the contrary, the other set of ATS domains for which we ob-

serve a reduction of identi�ers (i.e., Pubmatic, Rubicon, and OpenX)

do use more third-party identi�er cookies than �rst-party identi�er

cookies when third-party cookies are authorized. This observation

also explains the drastic drop in the number of requests containing

identi�ers to these other ATS domains after blocking third-party

cookies in Figure 2. We conclude that trackers that are not

a�ected by third-party cookie blocking are using �rst-party

cookies as a replacement.

4.4 Takeaway

Our di�erential measurement study reveals that third-party cookie

blocking does not e�ectively prevent tracking. There is only a

negligible reduction in the ex�ltration of identi�ers to trackers

when third-party cookies are blocked. We �nd that this is because

ATSes use �rst-party cookies in lieu of third-party cookies.

We also �nd that the impact of third-party cookie blocking is not

uniform across di�erent trackers. Some ATS domains show more

reduction in the ex�ltration of identi�ers than others. This disparity

exists because some trackers only use �rst-party cookies regardless

of the availability of third-party cookies; while others are using

both �rst-party and third-party cookies to store identi�ers.

5 COOKIEGRAPH: DETECTING FIRST-PARTY
TRACKING COOKIES

In this section, we describe CookieGraph, a graph-based machine

learning approach to detect �rst-party ATS cookies. CookieGraph

creates a graph representation of a webpage’s execution based

on HTML, network, JavaScript, and storage information collected

by an instrumented browser. In this graph, �rst-party cookies are

represented as storage nodes.CookieGraph extracts distinguishing

features of these cookies and uses a random forest classi�er to
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Figure 4: Overview of CookieGraph pipeline: (1) Webpage crawl using an instrumented browser; (2) Construction of a graph

representation to represent the instrumented webpage execution information; (3) Feature extraction for graph nodes that

represent �rst-party cookies; and (4) Classi�er training to detect �rst-party ATS cookies.

detect �rst-party ATS cookies. Figure 4 provides an overview of

CookieGraph’s pipeline.

5.1 Design and Implementation

Browser instrumentation. CookieGraph uses our extended ver-

sion of OpenWPM [52] to capture webpage execution information

across HTML, network, JavaScript, and the storage layers of a

webpage. Our analysis reveals signi�cant usage of localStorage in

addition to cookies. In total, we found 217,444 unique �rst-party

cookie names and 99,682 unique localStorage names. In addition to

this, we found 13,571 instances where the same �rst-party cookie

was also stored in local storage. Thus, we use the term “storage” to

refer to both cookies and localStorage. In most cases, the description

for cookies is also applicable to localStorage and vice versa.

CookieGraph captures HTML elements created by scripts, net-

work requests sent by HTML elements (as they are parsed) and

scripts, responses received by the browser, ex�ltration/in�ltration

of identi�ers in network requests/responses, and read/write opera-

tions on the browser’s storage mechanisms.

Graph construction. The nodes in CookieGraph’s graph repre-

sent HTML elements, network requests, scripts, and storage ele-

ments. When localStorage and �rst-party cookie nodes share the

exact same name, CookieGraph considers them as one storage

node. CookieGraph’s edges represent a wide range of interactions

among di�erent types of nodes e.g., scripts sending HTTP requests,

scripts setting cookies etc. In addition to interactions considered by

prior work [79], CookieGraph incorporates edges that model the

actions associated to tracking using �rst-party cookies. We identify

these actions from the result of our measurement study in Sec-

tion 4, and the case studies described in Appendix A.1. Cookies are

typically set with the values in�ltrated with HTTP responses and

are ex�ltrated via URL parameters and request headers or bodies;

CookieGraph captures in�ltrations and ex�ltrations by linking

the script-read/write cookies in the �rst-party execution context

to the requests of reader/writer script that contains those cookie

values. In addition to plain text cookie values, CookieGraph also

monitors Base64-, MD5-, SHA-1-, and SHA-256- encoded cookie

values in URLs, headers, request, and response bodies. Cookie-

Graph tracks the value of each cookie and associates the relevant

interaction (ex�ltration or in�ltration) to the element that initiated

the interaction. Because of our focus on identi�ers, CookieGraph

only captures cookie values that are at least 8 characters long (but it

would be trivial to extend it to consider smaller cookie values). Fig-

ure 5 illustrates how CookieGraph creates a graph representation.

In this example, a third-party script from tracker1.com executes in

a �rst-party context on the webpage, example.com. The script �rst

reads infoCookie (1), which contains tracking information such

as the publisher ID and a user signature. Then, the script sends

the content of the cookie to tracker1.com’s sync endpoint via an

HTTP POST request (2). The endpoint returns a user ID (UID) in

the response body (3), which is stored in both a �rst-party cookie

and localStorage named IDStore (4). At a later point, the script

reads the value from IDStore (5) and ex�ltrates the UID to two

other tracking endpoints: to tracker2.com via a URL parameter (6)

and to tracker3.com via an HTTP header (7).

Figure 6 shows the graph representation that CookieGraph

generates for the execution of the example script. The nodes in the

graph represent the script, the storage, and the network endpoints.

The edge numbers show the actions performed in Figure 5. The

dotted and dashed lines in the graph show the in�ltration and

ex�ltration behaviors captured by CookieGraph. CookieGraph

is not only able to capture the interactions of the script with the

storage and the network endpoints, but is also able to precisely link

ex�ltration and in�ltration of the �rst-party cookie via an edge from

the cookie node to the endpoint.

Feature extraction. We use CookieGraph’s representation to

extract two kinds of features.

Structural features represent relationships between nodes in the

graph, such as ancestry information and connectivity. Structural

features capture the relationships between the �rst-party cookie

nodes and scripts on the page. For example, how many scripts

interacted with a cookie or whether a script that interacted with a

cookie also interacted with other cookies.

Flow features represent �rst-party ATS cookie behavior. We

extract three types of �ow features. First, we count the number of

times a cookie was read or written. Second, we count the number of

times a cookie was in�ltrated via HTTP responses or ex�ltrated via

URL parameters, request headers, or request bodies. Third, features
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Figure 5: Example scenario to illustrate CookieGraph’s graph construction (shown in Figure 5).

1 2,3

4, 5

5, 6

5, 7

6

7

3,4

infoCookie

IDStore

JavaScript

2

6

7

Figure 6: Graph representation of Figure 5 in CookieGraph.

networknodes, script nodes, and storage nodes.While

the solid lines show the interactions of the script nodes with

the storage and request nodes, the dashed (- - -) and dotted (. .

.) lines represent the ex�ltration and in�ltration edges that

are captured by CookieGraph.

related to the setter of the cookie. Concretely, whether the setter’s

domain also acted as an end-point for other cookie ex�ltrations, and

whether the setter’s domain was involved in redirect chains (since

redirects are commonly used in tracking). The intuition behind

the third category of features is that domains involved in setting

�rst-party ATS cookies are also involved in sharing information

with other ATSes.

CookieGraph does not use content features, such as cookie

names, as they can be trivially modi�ed to evade detection [63, 79].

5.2 Evaluation

Similar to previous work on graph-based webpage modelling [62,

79], we use a random forest classi�er to distinguish between ATS

and Non-ATS cookies. We �rst train and test the accuracy of this

classi�er on a carefully labeled dataset. Then, we deploy it on our

20K website dataset.

5.2.1 Ground truth labeling. Weuse two complementary approaches

to construct our ground truth for �rst-party ATS cookies. We repre-

sent each �rst-party cookie as a cookie-domain pair since the same

cookie name can occur on multiple sites.

Filter lists.We rely on �lter lists [8, 9] as previous work has found

them to be reasonably reliable in detecting ATS endpoints [62, 79].

Filter lists are designed to label resource URLs, rather than cookies.

We adapt them to label cookies by assigning the label of a particular

resource to all the cookies set by that resource. Since both ATS and

Non-ATS cookies can be set by the same resource, this labeling

procedure could result in a non-trivial number of false positives.

To limit the number of false positives in our ground truth, we only

label Non-ATS cookies based on �lter lists: i.e., if a script that sets a

cookie is not marked by any of the �lter lists, we label these cookies

as Non-ATS. Conservatively, if any one of the �lter lists marks the

cookie’s setter as ATS, we label the cookie as Unknown.

Cookiepedia. Inspired by prior work [42], we use Cookiepedia [14]

as an additional source of cookie labels. Cookiepedia is a database

of cookies maintained by a well-known Consent Management Plat-

form (CMP) called OneTrust [42, 58]. For each cookie/domain pair,

Cookiepedia provides its purpose, de�ned primarily through the

cookie integration with OneTrust. Each cookie is assigned one of

four labels: strictly necessary, functional, analytics, and advertis-

ing/tracking. As Cookiepedia-reported purposes are self-declared,

we adopt a conservative approach: we only label a cookie-domain

pair as ATS if a cookie’s purpose is declared as advertising/tracking

or analytics in a particular domain. If the declared purpose is strictly

necessary or functional, we label the cookie as Unknown, as the

cookie might have been, mistakenly or intentionally, mislabeled.

We combine the results of the labeling approaches to obtain a

�nal label for the cookies. If both approaches label a cookie as Un-

known, its �nal label is Unknown. If only one of the approaches has

a known label, this is the �nal label. If Cookiepedia marks a cookie

as ATS and �lter lists mark it as Non-ATS, we give precedence to

the Cookiepedia label and assign the �nal label as ATS because

websites are unlikely to self-declare their Non-ATS cookies as ATS.

Using this labeling process, 82,098 out of 304,162 (26.99%) �rst-

party cookie and domain pairs have a known (ATS or Non-ATS)

label and the rest are labeled as Unknown. We observe that cookies

set by the same script across two di�erent sites are often labeled

ATS in one instance and Unknown in another instance because

Cookiepedia does not have data for the latter. As it is unlikely

that an ATS script changes purpose across sites, we propagate the

ATS label to all instances set by the same script. Using this label

propagation, we label 37.92% of the data, with 53,183 (46.10%) ATS

and 62,184 (53.90%) Non-ATS labels.

5.2.2 Classification. We train and test the classi�er on the labeled

dataset using standard 10-fold cross-validation. We ensure that
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there is no overlap in the websites used for training and testing in

each fold. Similar to Section 5.1, we limit the classi�er to cookies

whose value is at least 8 characters long. The classi�er has 90.07%

precision and 92.09% recall, with an overall accuracy of 90.18%,

indicating that the classi�er is successful in detecting ATS cookies.

5.3 Feature Analysis

Figure 7: Feature distribution of cookie ex�ltrations (top)

and storage sets (bottom) for ATS and Non-ATS cookies. ATS

cookies are ex�ltrated and set more than Non-ATS cookies,

resulting in �ow features based on ex�ltrations and sets

being helpful for the classi�er.

We conduct feature analysis to understand the most in�uen-

tial features in the classi�cation of cookies. We �nd that the most

in�uential features are the �ow features, which capture cookie

ex�ltrations, set operations, and redirections by cookie setters. Fig-

ure 7 shows the distributions for the number of cookie ex�ltrations

(top) and the number of times a cookie is set (bottom), for ATS

and Non-ATS cookies. ATS cookies are much more likely to be

ex�ltrated than Non-ATS cookies: ATS have a median number of

6 ex�ltrations (mean/std is 11.11/15.95) as compared to a median

of 0 for Non-ATS (mean/std is 0.62/5.29). Also, ATS cookies tend

to be set much more frequently by scripts, with a median of 3 set

operations (mean/std is 4.86/6.99) as compared to 1 for Non-ATS

cookies (mean/std is 2.17/6.08).

Our analysis of 26,242 �rst-party ATS cookies which were set

more than 3 times on the same site on our crawls shows that 50.2%

percent of these cookies were set with the same value but di�erent

expiry values. This points towards periodically re-setting a cookie

being an approach used by trackers to evade expiry limits enforced

by ITP (Safari) [87] and ETP (Firefox) [10]. For the rest of the ATS

cookies, it appears the most common use case of re-setting is to

update the ID value stored in the cookie. As we described in our

threat model and case studies, the ID values stored in these cookies

are updated when the ATS obtains more information about the user

and �nds a new match in the ID graph. Thus, it is not surprising

that these ATS cookies are continuously being updated with new,

improved identi�ers for the user.

These �ndings con�rm our conclusions in Section 4: �rst-party

ATS cookies are used to store identi�ers which are then ex�ltrated

to multiple endpoints.

Error analysis. We conduct a manual analysis of CookieGraph’s

false positives and false negatives to understand failures.

We �nd that the cookies that were most misclassi�ed as ATS are

those whose publicly available descriptions indicate they are used

to track visitors on a page (e.g., __attentive_id, messagesUtk,

omnisendAnonymousID) [4, 11, 13]. We also �nd a few instances of

well-known Google Analytics cookies _ga and _gid that are labeled

in ground truth as Non-ATS, but are classi�ed by CookieGraph

as ATS. Our manual inspection also shows that the false positives

are not caused by misclassi�cations, but mostly that the tracking

cookies �agged by CookieGraph were mislabeled as Non-ATS in

the ground truth. In other words, CookieGraph has likely cor-

rectly classi�ed these tracking cookies. We note that even after our

procedures to improve ground truth labels, there may be cookies

that did not have self-disclosed labels or were served from slightly

di�erent scripts (thereby missing our hash-based script matching).

This is a limitation of our ground-truth, as it relies on either the self-

declaration of the cookie purpose or a match between the setting

scripts to determine if a cookie is ATS. We leave the investigation

of methods of improving the ground truth labeling to future work.

Regarding false negatives, i.e., ATS cookies missed by Cookie-

Graph, wemainly observe two cases. First, we have the case of �nite

coverage of encodings. A representative case is the _pin_unauth

cookie. Its value is double-base64-encoded, which is not included

in the list of potential encoding schemes used by CookieGraph to

detect ex�ltration. These false negatives can be averted by using

a more comprehensive list of encoding schemes or by performing

full-blown information �ow tracking instead of approximating ex-

�ltration �ows; however, the latter would come at a performance

cost, as we discuss in Section 5.4.

Second, we have the case of lack of coverage of actions. Our

crawl to create the graphs in CookieGraph may not capture all

possible actions on a webpage. If CookieGraph does not capture

su�cient activity during webpage execution, some cookies may not

be triggered and therefore, the analysis will miss them. We further

discuss these cases of false negatives in Section 7.1

5.4 Comparison with Existing Countermeasures

In this section, we compare CookieGraph with existing counter-

measures that are used to restrict the e�ect of �rst-party cookies.

Intelligent Tracking Prevention (ITP) is used by Safari as a

broad countermeasure against online tracking activities. Under ITP,

Safari limits the maximum expiry time of a �rst-party cookie set

through JavaScript and HTTP requests received from IP addresses

di�erent from the host website to seven days [84]. In addition,

Safari limits this time to only 24 hours for known trackers.2 This

can be a prudent countermeasure if the �rst-party tracking cookies

were meant to be a storage for the identi�er for the repeat visits

of the user. However, as we have shown in the previous section,

�rst-party tracking cookies are shared with a large number of other

domains immediately after being set. This sharing of identi�ers

among di�erent trackers is meant to enhance their ability to track

2Firefox also limits the expiry time for cookies set by known trackers to 24 hours [69].
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Table 3: Classi�cation accuracy of CookieGraph,WebGraph,

and CookieBlock

Classi�er Accuracy Precision Recall

CookieGraph 90.18% 90.07% 92.09%

WebGraph 79.05% 71.67% 86.17%

CookieBlock 72.87% 70.73% 80.85%

users across di�erent sites. Limiting the amount of time that a

cookie is set for will not be able to stop this sharing of information,

thus proving ine�ective in protecting user privacy.

5.5 Comparison to classi�er-based blocking

Next, we compare CookieGraph with state-of-the-art countermea-

sures against ATS, CookieBlock [42] and WebGraph [79], in terms

of detection accuracy, website breakage, and robustness.

CookieBlock [42] is a state-of-the-art approach to classify cook-

ies, including advertising/tracking and analytics. It makes use of

both manually curated allow lists and a machine learning classi�er,

which mainly relies on features based on cookie attributes (cookie

names and values).

WebGraph [79] is the state-of-the-art graph-based approach to

classify ATS requests. As WebGraph is not designed to directly

classify cookies, we adapt it by identifying ATS resources identi�ed

by WebGraph in 3P-Blocked and generating a block list of cookies

for each domain set by those resources. This list is meant to mimic

the e�ect of blocking these resources on �rst-party ATS cookies.

5.5.1 Detection Accuracy. Table 3 compares the detection accuracy

of CookieGraph with CookieBlock and WebGraph. CookieGraph

outperforms both approaches in all metrics. The superiority in

precision indicates that existing countermeasures result in many

more false positives than CookieGraph. These additional false

positives mean that previous approaches would block functional

�rst-party cookies, potentially a�ecting user experience.

We also compared CookieGraph’s performance against popular

�lter lists [8, 9]. We found that 52.51% (834) third-party script do-

mains that set �rst-party ATS cookies identi�ed by CookieGraph

are not blocked by �lter lists. Some of the most common examples

include dynamicyield.com, pinimg.com, auryc.coml, tinypass.com,

and driftt.com. Some of the scripts loaded from these domains might

be blocked by �lter lists, but our tool �nds and blocks tracking

cookies from scripts that are either missed by �lter lists, or are

exempted due to breakage issues. For example, some scripts from

assets.adobedtm.com are blocked while others scripts are allowed

and set s_sq tracking cookie. CDNs like CloudFront are a common

example of such domains that are used to serve both functional and

tracking scripts.

5.5.2 Website Breakage. Wemanually analyze the breakage caused

by CookieGraph, CookieBlock and WebGraph’s on 50 sites that

are sampled from the 20K sites used in Section 4 (25 sites chosen

randomly from the top 100 and other 25 from the rest). 3

3The list of sites used in breakage analysis is available at:
https://github.com/cookiegraph/CookieGraph

We divide our breakage analysis into four categories of typical

website usage: navigation (from one page to another), SSO (initiat-

ing and maintaining login state), appearance (visual consistency),

and miscellaneous functionality (chats, search, shopping cart, etc.).

We label breakage as major or minor for each category: major break-

age – when it is not possible to use the functionality of the site in-

cluded in any of the aforementioned categories, and minor breakage

– when it is di�cult, but not impossible, for the user to make use of

the functionality. To assess breakage, we compare a vanilla Chrome

browser (with no countermeasures against �rst-party cookies) with

browsers enhanced with an extension that blocks �rst-party cook-

ies classi�ed as ATS by CookieGraph, enhanced with an extension

which blocks all cookies set by resources labeled as ATS by Web-

Graph, and enhanced with the o�cial CookieBlock extension [22].

In this analysis, we also include two additional con�gurations: �lter

lists [8, 9], and a Google Chrome with all cookies blocked. We used

two reviewers to perform the breakage analysis to mitigate the

impact of biases or subjectivity. Any disagreements between the

reviewers were resolved after careful discussion.

Out of the 50 sites, CookieGraph only had major breakage on

one site where a cookie popup kept freezing up and preventing

navigation around the website due to the deletion of a cookie that

stores user preferences. In contrast, WebGraph, CookieBlock, and

�lter lists cause major breakage in one of the four categories on

at least 6% of the sites. For example, WebGraph causes issues with

cart functionality on etsy.com, complete homepage breakage on

aliexpress.us, and SSO issues on other sites. Most of the breakage

issues of CookieBlock relate to SSO logins and additional login-

dependent functionality (e.g., missing pro�le picture). Our results,

that CookieBlock causes breakage on 10% of the sites with SSO

logins, are similar to the 7-8% breakage reported by the authors

[42]. Blocking all cookies results in major breakage on 32 percent

of the sites tested, with SSO and cart functionality proving to be

the most recurring issue.

We also �nd that WebGraph blocks some additional �rst-party

cookies that are important for server-side functionality, but not

directly related to user experience and therefore not immediately

perceptible. For example, WebGraph blocks essential cookies such

as Bm_sz cookie used by Akamai for bot detection, XSRF-TOKEN

cookie used to prevent CSRF on di�erent sites, and AWSALB cookies

used by Amazon for load balancing. CookieGraph correctly clas-

si�ed these cookies at Non-ATS, and thus does not prevent these

measures from being deployed.

Table 4: Website breakage comparison of all three

countermeasures.( ) signi�es no breakage, ( )

minor breakage, and ( ) major breakage. Each cell

represents the percentage of sites on which breakage was

observed.

Classi�er
Navigation SSO Appearance Miscellaneous

Minor Major Minor Major Minor Major Minor Major

CookieGraph 0% 2% 0% 0% 0% 0% 0% 0%

WebGraph 6% 2% 0% 2% 4% 2% 2% 2%

CookieBlock 2% 0% 0% 10% 0% 0% 2% 2%

Filter lists 4% 2% 0% 2% 2% 2% 2% 4%

No Cookies 8% 8% 0% 32% 6% 12% 2% 28%
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5.5.3 Robustness. We compare the robustness to evasion of Cook-

ieGraph, CookieBlock, and WebGraph, i.e., to intentional modi�-

cations of the cookies to cause the misclassi�cation of ATS cookies

as Non-ATS. Since ATS are known to engage in the arms race with

privacy-enhancing tools [39, 61, 66], it is important to test whether

the detection of �rst-party ATS cookies is brittle in the face of trivial

manipulation attempts such as changing cookie names.

We evaluate robustness on a test set of 2,000 sites from our

dataset which also have the required CMP needed by CookieBlock

for data collection and training. This translates to a total set of 7,726

�rst-party cookies. We change the names of the cookies in our test

set to randomly generated strings between 2 and 15 characters.

Both CookieGraph and WebGraph are fully robust to manipula-

tion of cookies names while CookieBlock’s accuracy degrades by

more than 15.87%, while precision and recall degrade by 15.23%

and 16.79% respectively. CookieGraph and WebGraph are robust

because they do not use any content features (features related to

the cookie characteristics, such as cookie name or domain) since

these can be somewhat easily manipulated by an adversary aiming

to evade classi�cation [79]. On the contrary, the most important

feature of CookieBlock depends on the cookie name, i.e., whether

the name belongs to the top 500 most common cookie names [41].

CookieGraph’s implementation of �ow features can be ma-

nipulated by an adversary by using a di�erent encoding than it

currently considers, or by changing the domains of ex�ltration end-

points.CookieGraph’s robustness to these attacks can be improved

by more comprehensive information �ow tracking. However, full-

blown information �ow tracking would incur prohibitively high

run-time overheads (up to 100X-1000X [57]) and implementation

complexity in the browser [45, 46, 67, 81]. This overhead is signi�-

cant not only at runtime but also in an o�ine setting. Optimistically,

assuming a 100X overhead, the time required to crawl a single page

increases from 60 seconds to 100 minutes. Crawling the landing

page and 20 internal pages for one website will thus take 34 hours

rather than 20 minutes. In addition to prohibitively large time for

website crawls, this delay would also likely impact the �delity of

the page execution itself.

To assess the robustness of CookieGraph against manipula-

tion of these �ow features, we remove the features related to the

�ow of cookie information (ex�ltration and in�ltration of �rst-

party ATS cookies) and then re-train/test the classi�er. We �nd

that CookieGraph’s accuracy drops by only 2% when ex�ltration

and in�ltration features are removed. Our feature analysis using

information gain shows that instead of focusing on ex�ltration

features, CookieGraph shifts focus to other features such as the

number of local storage accesses by a script and redirections by

cookie setters. While there is a slight performance degradation

when these features are removed, CookieGraph is able to adapt

and still outperforms existing countermeasures by more than 10%

in terms of classi�cation accuracy.

6 DEPLOYMENT

We deploy CookieGraph to classify �rst-party cookies in our crawl

of 20% of the top-million sites.

Prevalence of �rst-party ATS cookies. CookieGraph classi�es

61.37% of the 108,947 �rst-party cookies in our dataset as ATS. We

�nd that 89.86% of sites deploy at least one �rst-party ATS cookie.

Of these sites, the average number of �rst-party ATS cookies per

site is 12.38.

Who sets �rst-party ATS cookies? The vast majority (96.61%)

of the �rst-party ATS cookies are set by third-party embedded

scripts served from a total of 2,099 unique domains. This shows

that �rst-party ATS cookies are in fact set and used by third-parties.

These �rst-party cookies enable third-parties to perform same-site

tracking as described in Section 3.

Who sends and receives �rst-party ATS cookies? Next, we

analyze the most prevalent �rst-party cookies and the third-party

entities that actually set them. Table 5 lists the top-25 out of 20,794

�rst-party ATS cookies4 based on their prevalence5. Two major ad-

vertising entities (Google and Facebook) set �rst-party ATS cookies

on approximately a third of all sites in our dataset. CookieGraph

detects _gid and _ga cookies by Google Analytics as ATS on 62.63%

and 53.27% of the sites. The public documentation acknowledges us-

ing these two �rst-party cookies to store user identi�ers for tracking

[27]. We also �nd evidence of widespread cross-domain �rst-party

�rst-party ATS cookie sharing. For example, _gid and _ga cookies

are respectively ex�ltrated to 83 and 259 destination domains, more

than 95% of which are non-Google domains.

CookieGraph detects _fbp cookie by Facebook as ATS on 24.82%

of the sites. Their public documentation acknowledges that Face-

book tracking pixel stores unique identi�ers in the �rst-party _fbp

cookie [24]. In fact, Facebook made a recent change to include

�rst-party cookie support in its tracking pixel to avoid third-party

cookie countermeasures [38]. It is again noteworthy that the _fbp

cookie by Facebook is ex�ltrated to 423 destination domains, more

than 98% of which are non-Facebook domains.

TikTok, a social media app that is known to aggressively harvest

sensitive user information [30], also recently added support for

setting �rst-party tracking cookies using TikTok Pixel [35, 37]. Tik-

Tok’s �rst-party _ttp tracking cookie is present on 3.69% percent

of sites, which is considerably lower than Facebook and Google

but comparable to more specialized entities such as Criteo. Criteo’s

cto_bundle cookie is amongst the most prevalent �rst-party ATS

cookies. We observe that Criteo sets this �rst-party ATS cookie on

3.19% of the sites in our dataset and is ex�ltrated to 24 destinations.

The extensive sharing of �rst-party ATS cookies to other do-

mains enables cross-domain same-site tracking, through which

a tracker who is unable to set �rst-party cookies is still able to track

user activity on a site. Similar to results by [54], we �nd ATS cookies

to be extensively shared in redirects. 22% of all �rst-party cookies

ex�ltrated were found to be part of redirects. Table 5 highlights

extensive cookie-syncing between di�erent ATS, e.g., Yandex and

Hubspot’s �rst-party ATS cookies are shared to Google Analytics.

CookieGraph makes use of these cookie-syncing based char-

acteristics of �rst-party ATS cookies to detect tracking behavior.

In 15.73% of cases, the number of ex�ltrations by a script setting a

�rst-party ATS cookie is the most important classi�cation feature

4We report distinct tuples of the cookie name and the setter script’s URL.
5Prevalence denotes the percentage out of all sites analyzed on which the cookie was
classi�ed as ATS. Instances where the classi�cation was Non-ATS are excluded from
the prevalence analysis.
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6, while the number of redirects sent is the most important feature

in 6.39% of cases. Table 5 lists the most important feature for the

classi�cation of each of the top-25 ATS cookies, which shows the im-

portance of both ex�ltration and redirect information in detecting

�rst-party ATS cookies.

Cross-site tracking. As discussed in Section 3, trackers use deter-

ministic (e.g., email address) or probabilistic (�ngerprinting) iden-

ti�ers for cross-site tracking using �rst-party cookies.7 We show

that scripts that set �rst-party ATS cookies are also involved in

�ngerprinting.

First, we analyze the �rst-party cookies set by the scripts from

entities known to engage in browser �ngerprinting. We use Discon-

nect’s sublist of �ngerprinters [26, 33] from its tracking protection

list [6]. We �nd that 50 (0.42%) distinct domains that set �rst-party

cookies are also known �ngerprinters. These domains are responsi-

ble for setting 32.17% of all �rst-party ATS cookies.

Second, we use FP-Inspector [60] to further determine whether

�rst-party ATS cookies are set by �ngerprinting scripts. Using FP-

Inspector, we �nd that �ngerprinting scripts set �rst-party cookies

on 1,908 out of 20K sites. In total, 632 �rst-party cookies are set

by �ngerprinting scripts. 242 out of these 632 cookies, set by 175

di�erent �ngerprinting scripts, are classi�ed by CookieGraph as

ATS cookies. It is noteworthy that all of these 242 cookies (e.g.,

adtech_uid, tfstk, bafp, pxde, ssid) are not listed as tracking

cookies on Cookiepedia. Our manual analysis of the remaining 390

Non-ATS cookies shows that they store non-identi�able informa-

tion (e.g., domain names, �ags for cookie permissions).

7 LIMITATIONS

7.1 Completeness

CookieGraph relies on a graph representation of interactions be-

tween di�erent elements during webpage execution. The number

of interactions captured depends on the intensity and variety of

user activity on a webpage (e.g., scrolling activity, number of in-

ternal pages clicked). Thus, it is possible that CookieGraph does

not detect certain ATS cookies if user activity is insu�cient as

that would mean that its graph representation has not captured

particular interactions between di�erent elements in the webpage.

To study the impact of user activity, we recrawl sites performing

two to three times more internal page clicks than in the original

crawl. We speci�cally recrawl 238 sites where Criteo’s cto_bundle

cookie was originally classi�ed as Non-ATS by CookieGraph.

CookieGraph’s deployment on the recrawled sites results in suc-

cessful detection of Criteo’s cto_bundle cookie as ATS on 121 of

the 238 recrawled sites. We �nd that the average number of in�ltra-

tions (ex�ltrations) increase from 1.54 to 2.95 (1.13 to 4.01) across

the original and recrawled sites. We observed a similar trend for

other prevalent �rst-party ATS cookies in our dataset.

We surmise that while there are cases where CookieGraph

incorrectly classi�es ATS as Non-ATS due to incompleteness of

the graph representation, its decision re�ects the behavior of the

6We use treeinterpreter (https://github.com/andosa/treeinterpreter) to determine the
most important feature during the classi�cation of ATS cookies.
7While our automated crawls do not allow us to test the use of deterministic identi�ers
for cross-site tracking at scale, recent work [72] showed the use of email addresses
and other deterministic identi�ers by trackers such as Criteo.

cookie at the time of classi�cation. As more interaction is captured

in the graph, CookieGraph is able to correctly switch the label to

ATS. More importantly, CookieGraph never switches labels from

ATS to Non-ATS due to increased interaction.

7.2 Deployment Overhead

CookieGraph’s implementation is not suitable for runtime de-

ployment due to the performance overheads associated with the

browser instrumentation and machine learning pipeline. We envi-

sion CookieGraph to be used in an o�ine setting: First �rst-party

ATS cookie-domain pairs are detected using CookieGraph and

(2) the detected cookie-domain pairs are added to a cookie �lter

list such as those already supported in privacy-enhancing browser

extensions (e.g., uBlock Origin [36]) for run-time blocking. We

argue that a reasonably frequent (e.g., once a week) deployment

of CookieGraph on a large scale would be su�cient in generat-

ing and keeping the �lter list up-to-date. This anti-circumvention

based approach is frequently used by existing list-based counter-

measures and CookieGraph’s reliance on content features (or lack

thereof) prevents evasion by advertisers and trackers. On the other

hand, existing countermeasures [42], which heavily make use of

cookie name and content features, cannot simply be re-run to gen-

erate block lists for updated ATS cookies. While advertisers and

trackers can in theory change cookie names at a rate faster than

CookieGraph’s periodic deployment, updating cookie names fre-

quently is challenging in practice because setting these �rst-party

ATS cookies across many di�erent sites requires tight coordination

between di�erent entities. To illustrate the practical issues asso-

ciated with changing cookie names, consider the legacy demdex

cookie set by Adobe’s embedded script that is then ex�ltrated to

the demdex.net domain. Adobe’s documentation explains that it

is di�cult to change the legacy name because “... it is entwined

deeply with Audience Manager, the Adobe Experience Cloud ID

Service, and our installed user base” [5, 17]. If advertisers or track-

ers are somehow able to overcome these practical challenges and

change cookie names at a much faster pace, CookieGraph’s online

implementation for run-time cookie classi�cation would be neces-

sary. Further research is needed for e�cient and e�ective online

implementation of CookieGraph.

8 CONCLUSION

In this paper, we investigated the use of �rst-cookies for tracking.

Through a large-scale di�erential measurement, we showed that

trackers use �rst-party cookies to ex�ltrate identi�ers even when

third-party cookies are blocked. We found that third-party cookie

blocking is ine�ective and blanket �rst-party cookie blocking is not

practical because it results in major functionality breakage on al-

most one-third of sites. To detect and block �rst-party tracking cook-

ies, we proposed CookieGraph, a machine-learning approach that

captures fundamental tracking behaviors exhibited by �rst-party

cookies. Our evaluation showed that CookieGraph outperformed

the state-of-the-art in terms of detection accuracy, minimization

of website breakage, and robustness to evasion attacks. Our de-

ployment of CookieGraph on 20K websites provided evidence

of widespread use of �rst-party tracking cookies on 89.86% of the

tested sites. These �rst-party tracking cookies are set by third-party

embedded scripts served from 2,099 domains that include major

advertising entities such as Google, Facebook, and TikTok.
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Table 5: List of top-25 ATS cookies detected by CookieGraph

Cookie Script Org. Percentage Destination Most Important Top-3 Destination Domains

Name Domain of Sites Domains Feature # 1 # 2 # 3

_gid google-analytics.com Google 62.63 83 LocalStorage Sets through JavaScript google-analytics.com doubleclick.net mountain.com

_ga google-analytics.com Google 53.27 259 LocalStorage Sets through JavaScript google-analytics.com doubleclick.net google.com

_ga googletagmanager.com Google 31.31 222 LocalStorage Sets through JavaScript google-analytics.com doubleclick.net google.com’

_fbp facebook.net Facebook 24.82 423 Ex�ltrations through URL facebook.com datadoghq.com google-analytics.com

_gcl_au googletagmanager.com Google 19.05 39 LocalStorage Sets through JavaScript doubleclick.net google.com anytrack.io

__gpi googlesyndication.com Google 10.06 5 Redirects by Setting Script doubleclick.net googleadservices.com clicktripz.com

__gads doubleclick.net Google 9.47 11 Redirects by Setting Script doubleclick.net googleadservices.com wmcdp.io

__gads googlesyndication.com Google 9.26 4 Redirects by Setting Script doubleclick.net googleadservices.com clicktripz.com

__gpi doubleclick.net Google 8.61 11 Redirects by Setting Script doubleclick.net googleadservices.com wmcdp.io

ln_or licdn.com Microsoft 8.04 2 LocalStorage Sets through JavaScript tiqcdn.com tealiumiq.com

_uetsid bing.com Microsoft 7.47 115 LocalStorage Sets through JavaScript bing.com clarity.ms datadoghq.com

_uetvid bing.com Microsoft 7.47 134 LocalStorage Sets through JavaScript bing.com clarity.ms datadoghq.com

_ym_d yandex.ru Yandex 6.29 312 Redirects by Setting Script google-analytics.com doubleclick.net google.com

_ym_uid yandex.ru Yandex 6.29 103 Redirects by Setting Script google-analytics.com adfox.ru doubleclick.net

_hjTLDTest hotjar.com HotJar 6.19 1955 Ex�ltrations through URL google-analytics.com google.com facebook.com

__utmz google-analytics.com Google 5.12 6 LocalStorage Sets through JavaScript google-analytics.com retargetly.com zbj.com

__utmb google-analytics.com Google 5.12 11 LocalStorage Sets through JavaScript google-analytics.com doubleclick.net google.com

__utma google-analytics.com Google 5.12 14 LocalStorage Sets through JavaScript google-analytics.com thedermreview.com paltalk.com

__utmc google-analytics.com Google 5.01 26 LocalStorage Sets through JavaScript google-analytics.com yandex.ru moatads.com

OptanonConsent cookielaw.org CookieLaw 4.04 1 LocalStorage Sets through JavaScript gbqofs.io

_clck clarity.ms Microsoft 3.97 6 Redirects by Setting Script ezoic.net doubleclick.net tealiumiq.com

_clsk clarity.ms Microsoft 3.93 5 Redirects by Setting Script smart-bdash.com tealiumiq.com brightfunnel.com

_ttp tiktok.com TikTok 3.69 19 LocalStorage Sets through JavaScript tiktok.com tiqcdn.com uxfeedback.ru

__qca quantserve.com Quantcast 3.38 67 LocalStorage Sets through JavaScript rubiconproject.com yahoo.com gumgum.com

cto_bundle criteo.net Criteo 3.19 24 Ex�ltrations through URL criteo.com clarity.ms akstat.io

For reproducibility and to foster follow-up research, Cookie-

Graph’s source code (patch to OpenWPM and the machine learn-

ing pipeline) and the detected list of �rst-party tracking cookies is

available at https://github.com/cookiegraph/CookieGraph.
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A APPENDIX

A.1 Case Studies

In this section, we look at case studies of four popular ATS that

make use of �rst-party tracking cookies: Lotame, ID5, Criteo, and

The Trade Desk.

A.1.1 Lotame. Lotame is an identity management solution that

claims to provide a single ID to users across multiple browsers,

devices, and platforms. Lotame’s Lightning Tag [32] packages the

user visit data in a JSON object and sends it to its servers. Code 1

shows an example payload sent to Lotame. The payload includes IDs

assigned by the website, third-party identi�ers present on the site,

certain user behaviors (con�gured through collaboration between

the publisher and Lotame), and other custom rules de�ned per

website [31]. Lotame processes the payload and matches the data

with its Cartographer Identity Graph [21], and sends back an ID,

called panoramaID [34], which is stored as a �rst-party cookie or

in localStorage.

A.1.2 ID5 Universal ID. ID5 provides identity resolution for pub-

lishers and advertisers through its Identity Cloud [28]. ID5’s script

sends a request to its Identity Cloud with a payload that contains

several deterministic identi�ers, such as email, usernames, and

phone numbers (if available) as well as probabilistic identi�ers,

such as IP address, user agent, and location of the user [12]. Iden-

tity Cloud processes and returns an ID, called universal_id, which

is stored as a �rst-party cookie as well as in local storage. An ex-

ample payload from ID5 is shown in Code 2. We note that ID5 also

provides Partner Graph, a service that enables information sharing

among its partners [28]. Partner Graph allows di�erent identity

providers to exchange information with each other.

1 data: {

2 behaviorIds: [1,2,3],

3 behaviors: {

4 int: ['behaviorName ', 'behaviorName2 '],

5 act: ['behaviorName ']

6 },

7 ruleBuilder: {

8 key1: ['value 1a', 'value 1b']

9 },

10 thirdParty: {

11 namespace: 'NAMESPACE ',

12 value: 'TPID_VALUE '

13 }

14 }

Code 1: Example of data sent structure sent to Lotame during

a user’s �rst visit.

1 {

2 "created_at":"2022 -02-09T11:42:40.817811Z",

3 "id5_consent":true ,

4 "original_uid":"ID5*FnFOGLkYzdJ...Oeg2Ok4VTNc",

5 "universal_uid":"ID5*

HGH7W7iMpMu3-...szRCJDUkiiu-tv5BQ",

6 "signature":"ID5_Ab6tnGgm...JQWlsUEfynB1hBGZc",

7 "link_type":1,

8 "cascade_needed":true ,

9 "privacy":{

10 "jurisdiction":"other",

11 "id5_consent":true

12 }

13 }

Code 2: Example of data structure received from ID5 during

a user’s �rst visit.

A.1.3 Criteo. Criteo provides Criteo Identity Graph for identity

resolution [23]. Criteo Identity Graph is built from four di�erent

sources: (i) data contributed by advertisers, (ii) data collected from

publisher websites, (iii) data provided by Criteo partners such as Liv-

eRamp and Oracle, (iv) and predictions on existing data by Criteo’s

machine learning models. Criteo claims that its identity graph is

able to stitch together identi�ers from more than 2 billion users

across the world and that it contains persistent deterministic iden-

ti�ers for 96% of the users [23]. Similar to other identity resolution

services, Criteo generates an ID, based on identi�ers, such as hashed

emails, mobile device IDs, and cookie IDs, and stores it in both �rst-

party cookies and localStorage as cto_bundle. As described in

Section 5.1, CookieGraph’s graph representation abstracts storage

to refer to both Cookies and localStorage, and it includes a count of

localStorage accesses in the feature set computed from the graph

representation to e�ectively model this particular behavior.

A.1.4 The Trade Desk. The Trade Desk (TTD) is a digital market-

ing company whose stated aim is to improve digital advertising.

Their most relevant initiative is Uni�ed ID 2.0 (UID 2.0) [19], which

uses deterministic information such as email address and prob-

abilistic information such as browser/device attributes to create

identi�ers at the household and individual level. UID 2.0 is unique

because of its partnerships with major players and publishers in the

digital advertising ecosystem. Notably, ID5 [18] and LiveRamp [16],

which specialize in providing alternatives to third-party cookie-

based tracking, both collaborate with TTD to integrate with UID

2.0. UID 2.0 works by �rst collecting hashed email addresses and

other deterministic identi�ers from users visiting a website, which

is then sent to a UID 2.0 operator. The operator matches the hashed

email address with the centralized ID graph consisting of infor-

mation contributed by all UID 2.0 partners. In case of a match, an

encrypted user identi�er (or token) is sent back to the client-side

and stored in a �rst-party cookie. This token is used by TTD’s

partners, alongside other deterministic and probabilistic signals, to

identify a user through identity graphs as described in section 3.
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