
Automated discovery of privacy

violations on the web

Steven Tyler Englehardt

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance by

the Department of

Computer Science

Adviser: Arvind Narayanan

September 2018

c© Copyright by Steven Tyler Englehardt, 2018.

All rights reserved.

Abstract

Online tracking is increasingly invasive and ubiquitous. Tracking protection provided

by browsers is often ineffective, while solutions based on voluntary cooperation, such

as Do Not Track, haven’t had meaningful adoption. Knowledgeable users may turn

to anti-tracking tools, but even these more advanced solutions fail to fully protect

against the techniques we study.

In this dissertation, we introduce OpenWPM, a platform we developed for flexi-

ble and modular web measurement. We’ve used OpenWPM to run large-scale studies

leading to the discovery of numerous privacy violations across the web and in emails.

These discoveries have curtailed the adoption of tracking techniques, and have in-

formed policy debates and browser privacy decisions.

In particular, we present novel detection methods and results for persistent track-

ing techniques, including: device fingerprinting, cookie syncing, and cookie respawn-

ing. Our findings include sophisticated fingerprinting techniques never before mea-

sured in the wild. We’ve found that nearly every new API is misused by trackers

for fingerprinting. The misuse is often invisible to users and publishers alike, and in

many cases was not anticipated by API designers. We take a critical look at how the

API design process can be changed to prevent such misuse in the future.

We also explore the industry of trackers which use PII-derived identifiers to track

users across devices, and even into the offline world. To measure these techniques,

we develop a novel bait technique, which allows us to spoof the presence of PII on a

large number of sites. We show how trackers exfiltrate the spoofed PII through the

abuse of browser features. We find that PII collection is not limited to the web—the

act of viewing an email also leaks PII to trackers. Overall, about 30% of emails leak

the recipient’s email address to one or more third parties.

Finally, we study the ability of a passive eavesdropper to leverage tracking cookies

for mass surveillance. If two web pages embed the same tracker, then the adversary

iii

can link visits to those pages from the same user even if the user’s IP address varies.

We find that the adversary can reconstruct 62—73% of a typical user’s browsing

history.

iv

Acknowledgements

I am grateful to my advisor, Arvind Narayanan, for always being willing to provide

assistance and advice. Arvind has encouraged me to do the uncomfortable, to be

confident in my work, and to not be afraid to do things differently. I owe a lot of my

professional growth over the past five years to his guidance. I’ve learned the value

of real world impact in research, and perhaps more importantly, an understanding of

how to choose the right projects.

I am also grateful to my dissertation committee, Nick Feamster, Edward Felten,

Jennifer Rexford, and Prateek Mittal for their assistance and advice, not only during

the dissertation process, but throughout my time at Princeton.

I am incredibly lucky to have worked with such talented collaborators. I’ve bene-

fited from their advice, critiques, and insights. In particular, I’d like to thank Güneş

Acar, Claudia Diaz, Christian Eubank, Edward Felten, Jeffrey Han, Marc Juarez,

Jonathan Mayer, Arvind Narayanan, Lukasz Olejnik, Dillion Reisman, and Peter

Zimmerman. This research in this dissertation would not have been possible without

their contributions.

I could always count on the members of the security group to keep life interesting!

At any time of day you could jump in to an engaging conversation, whether it was

working through research ideas or playing along with one of our countless nonsensical

jokes. In particular, I’m thankful to Steven Goldfeder for the late-night comradery,

to Harry Kalodner who was never afraid to jump in to help me struggle through a

research problem, to Joe Bonneau for his assistance and encouragement, to Pete and

Janee Zimmerman for never failing to bring us all together, and to Ben Burgess for

teaching me that no amount of physical security is enough physical security.

My decision to pursue a career in research was the result of countless conversations

and mentoring from friends and collaborators at Stevens Institute of Technology. My

initial exposure to research was at the encouragement of Chris Merck, who introduced

v

me to the atmospheric research lab at Stevens. I owe a debt of gratitude to all of my

mentors along the way, including Jeff Koskulics and Harris Kyriakou.

I simply wouldn’t have made it to where I am today without my wife, Kim. She is

always encouraging and optimistic, helping me to be the best version of myself. She

has provided unwavering support and patience through the ups and downs of grad

school, and has been a constant source of happiness.

Lastly, I am grateful to my family, who have always supported me in all my

endeavours. My mother and father have taught me the value of hard and honest

work. I couldn’t ask for better role models in life.

The work in this dissertation was supported in part by a National Science Foun-

dation Grant No. CNS 1526353, a grant from the Data Transparency Lab, a research

grant from Mozilla, a Microsoft Excellence Scholarship for Internships and Summer

Research given through Princeton’s Center for Information Technology Policy, and

by Amazon Web Services Cloud Credits for Research.

vi

Contents

Abstract . iii

Acknowledgements . v

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 7

1.2.1 OpenWPM: a web measurement platform 8

1.2.2 The state of web tracking . 9

1.2.3 Measuring device fingerprinting 11

1.2.4 PII collection and use by trackers 12

1.2.5 The surveillance implications of web tracking 14

1.3 Structure . 15

2 Background and related work 17

2.1 Third-party web tracking . 17

2.1.1 Stateful web tracking . 19

2.1.2 Stateless tracking . 24

2.1.3 Cookie syncing . 27

2.1.4 Personally Identifiable Information (PII) leakage 28

2.1.5 Cross-device tracking . 29

2.1.6 Tracking in emails . 31

vii

2.2 The role of web tracking in government surveillance 32

2.2.1 NSA and GCHQ use of third-party cookies 33

2.2.2 United States Internet monitoring 34

2.2.3 Surveillance: attacks, defenses, and measurement 34

2.3 The state of privacy review in web standards 35

2.3.1 The W3C standardization process 36

2.3.2 W3C privacy assessment practices and requirements 37

2.3.3 Past privacy assessment research 38

3 OpenWPM: A web measurement platform 39

3.1 The design of OpenWPM . 40

3.1.1 Previous web tracking measurement platforms 41

3.1.2 Design and Implementation 43

3.1.3 Evaluation . 51

3.1.4 Applications of OpenWPM 53

3.2 Core web privacy measurement methods 54

3.2.1 Distinguishing third-party from first-party content 54

3.2.2 Identifying trackers . 55

3.2.3 Browsing Models . 56

3.2.4 Detecting User IDs . 59

3.2.5 Detecting PII Leakage . 61

3.2.6 Measuring Javascript calls . 62

4 Web tracking is ubiquitous 64

4.1 A 1-million-site census of online tracking 64

4.1.1 Measurement configuration . 65

4.1.2 Measuring stateful tracking at scale 66

4.1.3 The long but thin tail of online tracking 67

viii

4.1.4 Prominence: a third party ranking metric 69

4.1.5 News sites have the most trackers 71

4.1.6 Does tracking protection work? 73

4.2 Measuring Cookie Respawning . 74

4.2.1 Flash cookies respawning HTTP cookies 75

4.2.2 HTTP cookies respawning Flash cookies 78

4.3 Measuring Cookie Syncing . 79

4.3.1 Detecting cookie synchronization 79

4.3.2 Measurement configuration . 80

4.3.3 Cookie syncing is widespread on the top sites 81

4.3.4 Back-end database synchronization 83

4.3.5 Cookie syncing amplifies bad actors 85

4.3.6 Opt-out doesn’t help . 86

4.3.7 Nearly all of the top third parties cookie sync 87

4.4 Summary . 88

5 Persistent tracking with device fingerprinting 90

5.1 Fingerprinting: a 1-Million site view 91

5.1.1 Measurement configuration . 92

5.1.2 Canvas Fingerprinting . 93

5.1.3 Canvas Font Fingerprinting 96

5.1.4 WebRTC-based fingerprinting 97

5.1.5 AudioContext Fingerprinting 99

5.1.6 Battery Status API Fingerprinting 102

5.1.7 The wild west of fingerprinting scripts 103

5.2 Case study: the Battery Status API 104

5.2.1 The timeline of specification and adoption 105

5.2.2 Use and misuse of the API in the wild 111

ix

5.2.3 Lessons Learned & Recommendations 114

5.3 Summary . 119

6 Third-party trackers collect PII 120

6.1 Trackers collect PII in emails . 122

6.1.1 Collecting a dataset of emails 123

6.1.2 Measurement methods . 128

6.1.3 Privacy leaks when viewing emails 132

6.1.4 Privacy leaks when clicking links in emails 138

6.1.5 Evaluation of email tracking defenses 140

6.1.6 Survey of tracking prevention in email clients 143

6.1.7 Our proposed defense against email tracking 144

6.1.8 Limitations . 146

6.2 Trackers collect PII on the web . 147

6.2.1 Measurement configuration . 148

6.2.2 Measurement methods . 148

6.2.3 Browser login managers are vulnerable to abuse 149

6.2.4 Third-party collection of PII through DOM scraping 154

6.2.5 Countermeasures to PII collection 161

6.3 The ineffectiveness of hashing for privacy 163

6.4 Summary . 164

7 The surveillance implications of web tracking 165

7.1 Threat model . 167

7.2 Measurement methods . 169

7.2.1 Browsing models . 170

7.2.2 Measurement configuration . 171

7.2.3 HTTP Traffic geolocation . 172

x

7.2.4 Transitive Cookie Linking . 174

7.2.5 Identity leakage in popular websites 177

7.3 Network adversaries can effectively cluster traffic 177

7.3.1 Clustering . 178

7.3.2 U.S. Users Under One-End Foreign 180

7.3.3 Cookie Linking in Non-U.S. Traffic 181

7.3.4 Cookie Linking Under Blocking Tools 182

7.3.5 Identity Leakage . 184

7.4 Third parties impede HTTPS adoption 185

7.5 Discussion . 188

7.5.1 Extending the attack: linking without IP address 188

7.5.2 Limitations . 189

7.6 Summary . 190

8 Conclusion 192

A Appendix 198

A.1 Landing page detection from HTTP data 198

A.2 Leak detection: encodings and hashes 199

A.3 List of HTTP Respawning Scripts . 200

A.4 Fingerprinting script lists . 200

A.5 OpenWPM mailing list form discovery method 204

A.6 Mixed content detection in HTTP data 206

A.7 Content types for resources which caused mixed content errors. 207

A.8 Scripts exfiltrating information from browser login managers. 208

Bibliography 210

xi

Bibliographic Notes

This dissertation is based on work presented in a number of academic papers and

blog posts. We list these works here, along with the respective chapters that build

upon them.

• Cookies that give you Away: Evaluating the surveillance implications

of web tracking [121]. Included in chapters 1, 2, 3, and 7.

• The Web Never Forgets: Persistent tracking mechanisms in the wild

[29]. Included in chapters 1, 2, 3, 4, and 5.

• Online Tracking: A 1-million-site measurement and analysis [120].

Included in chapters 1, 2, 3, 4, 5, 7, and 8.

• Battery Status Not Included: Assessing Privacy in Web Standards

[260,261]. Included in chapters 1, 2, and 5.

• I never signed up for this! Privacy implications of email tracking

[119]. Included in chapters 1, 2, 3, 6, and 8.

• No boundaries: Exfiltration of personal data by session-replay scripts

[116]. Included in Chapter 6.

• No boundaries for credentials: New password leaks to Mixpanel and

Session Replay Companies [117]. Included in Chapter 6.

xii

• No boundaries for user identities: Web trackers exploit browser login

managers [28]. Included in Chapter 6.

• Website operators are in the dark about privacy violations by third-

party scripts [118]. Included in Chapter 6.

xiii

Chapter 1

Introduction

1.1 Overview

Data collection on individuals by is commonplace on the web. Nearly every

website a user visits records, aggregates, and shares information about that visit with

third-party entities. The ubiquitous presence of the web in modern life is due in large

part to its “mash-up” design—any website can pull in and make use of content from

any number of entities. Web developers can take advantage of this to easily build and

monetize web applications that provide a rich user experience. However, this same

“mash-up” nature has significantly reduced the cost of individual data collection and

has greatly complicated efforts to protect user privacy.

A major funding mechanism for the web is behavioral advertising—that is, adver-

tising which is targeted based on a user’s personal information, interests, and past

behaviors. Behavioral advertising requires a significant amount of data collection,

ranging from data collected to better target an advertisement to the collection of

purchase data to attribute the sale of a product to an advertiser. Another driving

factor is the collection of detailed analytics data by third parties to help websites

better understand and monetize their audience. There are a number of contributing

1

factors that enable and incentivize this type of data collection. We describe each in

turn.

• Data collection is largely invisible to users. When a user visits a site, there is

no visual indication of the amount of tracking the site contains. In fact, it’s

not only difficult for users to determine the how they’re tracked, the websites

themselves often don’t know exactly which trackers they embed [118]. This

is further evidenced by the existence of companies which specialize in helping

websites discover unauthorized third-party embeds.1

• Any third-party embedded on a site can collect user data. While the techniques

a third party can use to track users varies by the resource type and location of

embedding (Section 2.1), any resource can be used to collect some user data. In

the case of passive fingerprinting (Section 2.1.2), this tracking can be completely

invisible—even to researchers. In some cases, such as when the embedded third-

party resource is a script, the third party can invisibly pull in resources from

other third parties, furthering the risk of surreptitious data collection.

• The dynamic nature of the web makes this data collection difficult to monitor

and prevent. There may be large differences in the set of resources loaded

between two visits to the same website, depending on the chain of third-party

includes. In additional to privacy concerns, this has led to concerns of audience

leakage and advertisement fraud.2 In extreme cases, advertisements on the page

are used to deliver malware to the user [298]. Indeed, we have had to provide

1OpenX provides such a service for websites (through its acquisition of Mezzobit). See https:

//www.openx.com/publishers/openx-mezzobit/.
2Audience leakage describes the process by which website audience data is shared with third

parties without a reciprocal relationship between the third party and website [177]. As an example,
consider an ad auction running on example.com. When the auction runs, a number of third parties
may learn that the user is a subscriber of example.com without ever serving an ad. Advertisement
fraud can take a variety of forms, but generally refers to the process by which a website falsifies
performance metrics to receive undeserved advertising revenue. Examples include falsifying where
an ad was displayed or to which type of user it was displayed [37].

2

https://www.openx.com/publishers/openx-mezzobit/
https://www.openx.com/publishers/openx-mezzobit/
example.com
example.com

additional information to several site owners to help them determine the origin

of invasive tracking scripts exposed by our research [28].

• Personalized advertising relies on a rich ecosystem of third parties.3 To display

a personalized advertisement, a website will typically run an advertisement auc-

tion. This process involves a number of third parties on the supply-side of the

transaction, all of which may collect information about the user and share it

with a number of third parties on the buy-side of the transaction. The third

parties purchasing the advertisement will use their own tracking data in com-

bination with data provided by the supply-side parties to determine whether

and how much they will pay for the advertisement slot. Once the advertise-

ment is displayed, it may be served alongside a script from an unrelated party

which performs impression verification; i.e., certifying that the advertisement

was served to a human. Finally, additional parties may be embedded into the

page to track “conversions”, or advertisement clicks that result in a purchase.

Any one of these parties has the technical capability to track the user, and in

practice many will.

• Abuse of tracking data is difficult to audit. The open nature of the web platform

provides unprecedented insight into how and by whom user data is collected.

However, once tracking data is transferred to third-party servers it becomes

much more difficult to audit its use. Data may be shared or aggregated between

third parties without the knowledge of the user. Website privacy policies rarely

provide details regarding which third parties are embedded on the page [202].

Academic projects have had some success in attributing advertisements to spe-

cific targeting criteria, but only in a narrow set of use cases [100, 194, 195].

Large scale auditing of data use in advertisements is not yet feasible. Similarly,

3For an overview of the parties involved in serving a programmatic advertisement, see: https:

//pagefair.com/data-leakage-in-online-behavioural-advertising/.

3

https://pagefair.com/data-leakage-in-online-behavioural-advertising/
https://pagefair.com/data-leakage-in-online-behavioural-advertising/

regulators and media pressure have succeeded in pressuring several large data

collectors to provide some transparency tools [142, 330], but these tools only

show a slice of all data collected and used for web tracking.

• The increasing sophistication of the web platform helps trackers. Browser ven-

dors continue to refine the web platform by adding new HTML5 features; recent

examples include support for virtual reality hardware [329] and complex video

rendering [188]. In many cases, these new features lead to privacy vulnerabil-

ities. Past research found trackers abusing stateful browser features to store

tracking identifiers that users couldn’t clear [47, 295, 304]. In our research, we

show that trackers are often early adopters of these new features (Chapter 5).

Until fairly recently, the standards community did not have a formal process or

requirement to review the privacy impact of new web features (Section 2.3).

Ubiquitous data collection has societal risks. Web tracking and individual

data collection on the web has a wide range of effects. Users often misunderstand

the process by which their data is collected and used [344], and find personalized

advertising creepy and invasive [222, 316]. Furthermore, when users better under-

stand the extent to which data is collected, they feel less comfortable with targeted

advertising [282, 312]. Some users report that this feeling of discomfort is enough to

make them change their practices [222], showing that the data collected for targeted

advertising has a chilling effect on users’ actions on the web.

The data collected for targeted advertising can be abused in a number of ways.

Tracking data can be used for price discrimination, the process of pricing a product

or service based on the consumer’s willingness to pay [249]. Price discrimination is

often desirable for sellers to maximize revenue, but is disliked and viewed as unfair by

the large majority of consumers [311]. While overt individual price discrimination has

not been observed by past research [227, 324], researchers have seen price steering—

4

the process by which certain consumers are presented with more expensive product

options as a result of their browsing history [151,227].

In recent years personalized advertising has been used to manipulate users [27].

During the 2016 U.S. presidential election, divisive Facebook advertisements were

purchased by Russian organizations and targeted to U.S. voters [165] The advertisers

used Facebook’s ad targeting categories to show ads to voters likely to be interested

in hot-button issues, such as “gun rights”. Some of these data categories are likely to

have been built on top of web tracking data [43].

Web tracking data is often collected with the justification that it is “anonymous”.

In practice, there are a number of ways to identify the individuals from the clickstream

data collected by trackers. Trackers can identify users through first-party logins

(for those trackers that have a first-party presence), leaked identifiers in URLs, or

through direct collection of personal information (e.g., through web surveys) [242].

Web browsing history itself is sufficiently unique and stable to serve as an identifier for

a user [259]. It’s often possible to identify a user’s browsing history by observing just

a subset of page visits—example attacks include discovering visits through a browser

vulnerability [259] or recording the links a user shares on social media [305].

The ubiquitous presence of web tracking identifiers also has second-order impacts.

In particular, the pervasive monitoring of internet traffic through network surveillance

is strengthened by the presence of tracking identifiers [126]. As we show in Chapter 7,

tracking identifiers sent in unencrypted traffic allow a network attacker, like the NSA,

to cluster page visits and link those visits to real identities. This enabled a number of

attacks. First, browsing history itself could be the information of interest, as in the

NSA plan to discredit “radicals” based on browsing behavior, such as pornography

[15]. Second, further sensitive information might be found in unencrypted web content

such as preferences, purchase history, address, etc. Finally, it can enable active attacks

such as delivering malware to a targeted user [135,296].

5

Web Privacy Measurement—observing websites and services to de-

tect, characterize and quantify privacy-impacting behaviors—has proved

tremendously influential. The majority of browser vendors do little to prevent

user tracking, and the protections that users can opt-in to address only part of

the problem. Efforts by the community to self-regulate, including The Platform

for Privacy Preferences (P3P) and Do Not Track (DNT), have been similarly ineffec-

tive [86,148,197]. Instead, web privacy measurement has repeatedly forced companies

to improve their privacy practices due to public pressure, press coverage, and regula-

tory action [101,127,293,317].

Web measurement is hard because the web is not designed for automation or

instrumentation. Selenium,4 the main tool for automated browsing through a full-

fledged browser, is intended for developers to test their own websites. As a result

it performs poorly on websites not controlled by the user and breaks frequently if

used for large-scale measurements. Browsers themselves tend to suffer memory leaks

over long sessions. In addition, instrumenting the browser to collect a variety of data

for later analysis presents formidable challenges. For full coverage, we’ve found it

necessary to have three separate measurement points: a browser extension, in-page

instrumentation, and a disk state monitor.

We envision a future where measurement provides a key layer of oversight of

online privacy. This will be especially important given that perfectly anticipating and

preventing all possible privacy problems (whether through blocking tools or careful

engineering of web APIs) has proved infeasible. To enable such oversight, we have

made our data and measurement platform, OpenWPM, available publicly. We expect

that measurement will be useful to developers of privacy tools, to regulators and policy

makers, journalists, and many others.

4http://www.seleniumhq.org/

6

http://www.seleniumhq.org/

1.2 Contributions

The purpose of this dissertation is to advance the tools and methods of the web privacy

measurement community, as well as to advance the understanding of the invasive

techniques used to track users. To that end, we developed OpenWPM, an open

source platform for running privacy studies across millions of websites (Chapter 3).

Over the course of its development OpenWPM has been used in 22 academic studies,

including several of our own (Section 3.1.4). In this dissertation, we make extensive

use of OpenWPM to quantify, understand, and uncover the ways users are tracked.

We make contributions to several distinct areas of study: web tracking (Chap-

ter 4, Chapter 5, and Chapter 6), government surveillance (Chapter 7), and the

standardization process for the web platform (Section 5.2). In each area, we show

how large-scale measurement can be used to discover new privacy vulnerabilities,

quantify known problems, and evaluate defenses. We show that the techniques and

tools we developed for measuring web tracking can be used to evaluate the threat of

government surveillance. Similarly, we show the problems that arise when designing

web APIs in the absense of usage data, and proposal that abuse measurement become

a core component of the standardization process.

Our tracking measurements fall into three broad categories: (1) stateful tracking

(Chapter 4), (2) stateless tracking through device fingerprinting (Chapter 5), and

(3) tracking with identifiers which are based on the user’s personally identifiable

information (Chapter 6). We note several high-level observations:

• Tracking is ever-present, both in emails and on the web. In most cases—93%

of websites and 85% of emails—a user will encounter at least one third party

when reading a website or opening an email.

• The larger trackers by-and-large use simpler tracking techniques that offer users

more control. The more invasive techniques, such as device fingerprinting and

7

PII-based tracking are used by trackers with a smaller presence. However, we

show that the interconnected nature of tracking can amplify the practices of

these bad actors.

• Privacy extensions which block resources using blacklists consistently offer users

the best protection from tracking. However, even these extensions appear to

miss the lesser known trackers or trackers using lesser known techniques. We

show that automated web measurement can detect these missed trackers and

complement current blacklists.

• Web tracking has second-order impacts beyond the immediate harms of data

collection by trackers. We show how the widespread tracking of users helps

network surveillance agencies record a user’s browsing history.

1.2.1 OpenWPM: a web measurement platform

A core contribution of this dissertation is the development of OpenWPM, a generic

web measurement platform that supports large-scale measurements with a realistic

browser (Chapter 3). Realistic web measurement is hard; websites often deploy bot

detection techniques that can detect measurement instances and treat them differ-

ently than real humans. By building upon the Firefox web browser, OpenWPM

makes to possible to run web measurement studies on millions of websites with a con-

sumer browser that supports all of the modern web platform features. This means

it’s more difficult to detect an OpenWPM instance as a bot. OpenWPM includes

deep instrumentation to record much of the data a researcher might need for a pri-

vacy measurement study, including: all HTTP request and response data, records

of when and by whom browser storage was accessed, and probes that monitor many

of the Javascript APIs used for device fingerprinting5 OpenWPM’s design is robust

5For a description of device fingerprinting see Section 2.1.2.

8

to browser crashes and failures, and saves data in a standardized output format to

facilitate data sharing and repeated analyses.

Alongside OpenWPM we introduce a set of methods that are fundamental to

many measurement tasks: the classification of third-party content (Section 3.2.1)

and trackers (Section 3.2.2) on the web and in emails, several methods of generating

browsing models for measurements (Section 3.2.3), and analysis methods to analyze

tracking scripts on the web (Section 3.2.6). In addition, we propose several advanced

techniques that are useful for measuring web trackers, including: detecting unique

identifiers stored in browser storage (Section 3.2.4), discovering leaks of personal data

in HTTP traffic, even when that data is encoded (Section 3.2.5), and a “bait tech-

nique” to spoof that personal information is present on real websites (Section 6.2.2).

These methods are robust to changes in the web platform or protocols, as they can

easily be adapted for new storage techniques or communication channels.

1.2.2 The state of web tracking

We analyzed tracking on the top 1 million websites (Chapter 4). This represents

one of the largest automated measurements of web tracking performed with a real

consumer browser. In particular, we showed that web tracking has a “long tail” of

trackers, but only 123 of which were present on more than 1% of sites. The only

third-party organizations present on more than 10% of sites at the time were some of

the largest companies in the world—Google, Facebook, Twitter, Amazon, AdNexus,

and Oracle. This analysis alone doesn’t fully capture a third party’s ability to track

a user, since users spend more time on the top sites. To address that, we also rank

trackers by their prominence, a metric we propose for weighting a third party by the

popularity of the sites which embed it. We show that the prominence metric works

well when comparing tracker popularity across measurements. We also found that

9

tracking varied significantly across categories of sites, with news sites having the most

trackers.

In addition, we performed the first large-scale measurements of cookie respawning

and cookie synchronization. Cookie respawning is the process by which trackers store

identifiers in multiple locations in the browser and use this information to “respawn”

HTTP cookies if they are cleared.6 We developed a technique to automate and

parallelize the detection of respawned cookies, allowing us to measure the practice

on 10,000 sites—a scale much larger than previous studies (100 [47] and 600 [223]

sites). We found that cookie respawning was still present on many of the top sites

in China and Russia. Cookie syncing is the process by which trackers can bypass

the Same Origin Policy (SOP) to share identifiers with each other.7 We show that

cookie syncing was widespread on the top sites and that nearly all of the top third

parties cookie sync. More importantly, we examine how data sharing enabled by

cookie syncing could allow hundred of third parties to learn about a large portion of

a user’s browsing history.

Turning to tracking defenses, we evaluated the reduction in tracking caused by

built-in browser defenses, tracker blockers available as browser extensions, and the

advertising industry’s own opt-outs. We show that third-party cookie blocking was

very effective at blocking cookie-based tracking and reduced the number of third

parties per site by nearly 29% (from an average of 17.7 third parties per site to

12.6). We found that the blocklist-based Ghostery browser extension had a much

more significant impact, reducing the average number of third parties per site to just

3.3. We also found that industry opt-outs resulted in a modest reduction in tracking

cookies, but had a relatively minor impact on cookie syncing.

6We define cookie respawning in more detail in Section 2.1.1.
7We define cookie syncing in more detail in Section 2.1.3.

10

1.2.3 Measuring device fingerprinting

In addition to tracking with cookies, trackers can attempt to identify users by record-

ing detailed information about their devices. The process is known as device fin-

gerprinting8; trackers will typically produce a fingerprint by abusing web platform

features to extract identifying device information, such as the operating system ver-

sion or graphics hardware stack.

We make three contributions in Chapter 5: we develop a set of semi-automated

techniques for detecting fingerprinting, we measure the use of fingerprinting on the top

1 million sites, and perform a case study of the development of the Battery Status

API and use it to distill recommendations for mitigating fingerprinting during the

standardization process.

We performed the first automated measurements of several advanced fingerprint-

ing techniques, including those which used the Canvas, WebRTC, and Battery APIs.

During our investigations we discovered a new fingerprinting technique that uses the

Audio API, and likewise performed the first measurement of its use in the wild. Over-

all we found that fingerprinting is more common on popular sites, but is more often

performed by less popular trackers. Fingerprinting occurred on far fewer sites than

stateful tracking; even on the top 1,000 sites, where we observed fingerprinting most

frequently, it occurred on just 5% of sites.

Device fingerprinting is difficult to defend against—browser APIs that have al-

ready shipped can’t be changed without web compatibility, and it’s impractical to

change the properties of a device. Instead, users can install tracking blocking tools to

block fingerprinting scripts entirely. We measured how well common tracker blocklists

were able to detect the fingerprinting scripts we discovered. We found that the block-

8We define device fingerprinting in more detail in Section 2.1.2

11

lists9 detected better-known techniques (like canvas fingerprinting) more frequently,

but missed lesser known techniques (like WebRTC) and less popular scripts.

While previous web standards rarely addressed fingerprinting, that has started to

change in recent years following formal recommendations for privacy assessments by

standards bodies [95, 102, 108]. We perform a case study of the standardization of

the Battery Status API, which was ultimately removed from several browser engines

following the discovery of privacy vulnerabilities. We show that the API was indeed

primarily used by trackers and provide several recommendations for future standards

work. These include: requiring a privacy review of implementations, auditing API

use in the wild after deployment, and avoiding over-specification of mitigations.

1.2.4 PII collection and use by trackers

In Chapter 6 we study the collection of PII for the purposes of cross-site tracking or

website analytics. Unlike stateful tracking (Chapter 4) or fingerprinting (Chapter 5),

PII-based identifiers are not tied to a device. Instead, the information collected by

trackers can be used to follow users across devices and even link data collected online

to data collected from offline sources. Similarly, the personal data collected by third

parties—even those which don’t use it for cross-site tracking—further exposes users

to potential misuse and data breaches.

We measure PII collection both in emails and on the web. We contribute new

methods to detect PII-based tracking, as well as new measurement results. Overall,

our results bring to light two new trends in web tracking: the collection of hashed

email addresses for the purposes of tracking and the increasingly invasive practices of

tracking and analytics scripts embedded directly into websites.

PII leakage in emails. Email tracking is pervasive. We found that 85% of emails

in our corpus contain embedded third-party content, and 70% contained resources

9We tested the Disconnect list and a combination of EasyList and EasyPrivacy.

12

categorized as trackers by popular tracking-protection lists. There were an average

of 5.2 and a median of 2 third parties per email which embedded any third-party

content, and nearly 900 third parties contacted at least once. But the top ones are

familiar: Google-owned third parties (Doubleclick, Google APIs, etc.) were present

in one-third of emails.

We simulated users viewing emails in a full-fledged email client (Section 6.1.3).

We found that about 29% of emails leaked the user’s email address to at least one

third party, and about 19% of senders sent at least one email that had such a leak.

The majority of these leaks (62%) were intentional, based on our heuristics. Tracking

protection was helpful, but not perfect: it reduced the number of email leaks by 87%.

Interestingly, the top trackers that received these leaked emails were different from

the top web trackers. We present a case study of the most-common tracker at the

time of measurement, LiveIntent (Section 6.1.3).

PII leakage on the web. Websites commonly embed third-party scripts into the

main context of the page. Scripts that are embedded in this way are not restricted

by the Same Origin Policy (SOP) from accessing any content in the main frame.

We examine two distinct vulnerabilities that highlight the risk of this practice: the

exfiltration of content from the DOM and the abuse of browser login managers. To

measure both vulnerabilities we introduce a bait technique, in which we inject sensitive

information into different parts of the page or browser and check to see if any scripts

exfiltrate that data.

We discovered 28 different third parties scraping information from the DOM to

provide analytics, translation, advertising, and support services. Many of the services

offered some combination of manual and automated redaction to prevent the collection

of sensitive information. We conducted a case study of “session replay” scripts, which

collect information from the DOM to produce recordings of how users interact with

websites. We found that these redaction features were often incomplete or went

13

unused by first parties. We also discovered two parties abusing the browser login

manager to extract user email addresses. These scripts injected invisible forms into

the page, waited for the browser’s autofill feature to fill them, and then extracted

usernames from the autofilled forms.

1.2.5 The surveillance implications of web tracking

In Chapter 7 we examine the use of web tracking data in government surveillance.

Our contributions are both conceptual and empirical. First, we identify and formalize

a new privacy threat from packet sniffing. While the technique of utilizing cookies

to target users is well understood (Chapter 4), we formulate the attack concretely in

terms of the following steps: (1) automatically classifying cookies as unique identifiers

(2) using multiple ID cookies to make transitive links between site visits that allow

us to cluster HTTP traffic, (3) geographically tagging the flow of traffic, and (4)

inferring real-world identity from HTTP request and response bodies. We believe

this attack to be the strongest known way for a passive adversary to utilize web

traffic for surveillance.

Next, we rigorously evaluate the above attack model using a novel methodology

that combines web measurement, network measurement, a user model, and an ad-

versary model (Section 7.2). We simulate realistic browsing behavior and measure

the actual cookie ecosystem. This requires nuanced techniques along several fronts:

(1) the use of OpenWPM (Chapter 3) to closely simulate real users (2) a model of

browsing history derived from real user behavior, and (3) network measurements to

help verify the robustness of geolocation data.

We build a browsing model based on search data from real users who made between

0 - 300 web searches over a 2 - 3 month period, and simulate that browsing in a June

2014 web crawl. We consider users located in several possible countries. For each

such set of visits, we perform clustering using the method described above and find

14

the “giant connected component.” For non-U.S. users, we consider an adversary with

wiretaps in the target user’s country as well as one with wiretaps in the U.S. On a

high-level, our results are as follows:

• For a U.S. user, over 73% of visits were in the connected component. The

clustering effect was extremely strong and robust to differences in the models of

browsing behavior. Clustering even occurred when the adversary was restricted

to a small, random subset of the user’s requests.

• Non-U.S. locations showed a lower degree of clustering due to a lower number

of embedded third-parties: over 59% of traffic was in the giant connected com-

ponent. If the adversary was further restricted to be in the U.S., the clustering

level dropped significantly (12% – 20%), but this is still surprisingly high given

that these users were browsing local content.

• Of the Alexa Top 50 U.S. sites, 56% transmitted some form of identifying in-

formation in plaintext once a user logged in, whether first name, first and last

name, username, or email address. The majority of these (42% of websites

overall) transmitted unique identifiers (username or email address) in the clear.

• Built-in browser protections were able to reduce but not fully mitigate the

attack. The most effective blocking solution, the Ghostery browser extension,

still allowed 24.2% of a user’s traffic to be clustered, while alternative solutions

had far less of an impact.

1.3 Structure

This dissertation introduces automated web privacy measurement methods and tools,

and uses them to study three classes of web tracking: stateful tracking (Chapter 4),

stateless tracking (Chapter 5), and PII-based tracking (Chapter 6). The dissertation is

15

structured as follows: Chapter 2 provides the background and related work, Chapter 3

introduces OpenWPM and several measurement methods used throughout our work,

Chapter 4, Chapter 5, and Chapter 6 present web tracking measurement results, and

in Chapter 7 we examine the externalities of web tracking.

16

Chapter 2

Background and related work

Third-party web tracking has been studied since the early 2000s. A large body of

research details the evolution of tracking techniques and records the growth of track-

ing on the web. Our work builds on this foundation, making contributions to several

distinct areas of study: web tracking measurement (Section 2.1), government surveil-

lance (Section 2.2), and the web standardization process (Section 2.3).

2.1 Third-party web tracking

As users browse and interact with websites, they are observed by both “first parties,”

which are the sites the user visits directly, and “third parties” which are typically

hidden trackers such as ad networks embedded on most web pages. Third parties can

obtain users’ browsing histories through a combination of cookies and other tracking

technologies that allow them to uniquely identify users, and the Referer1 header

that tells the third party which first-party site the user is currently visiting. Other

sensitive information such as email addresses may also be leaked to third parties,

either directly or through the Referer header.

1The Referer header is a misspelling of referrer.

17

Third-party tracking has grown tremendously in prevalence and com-

plexity since the introduction of HTTP cookies in the early 1990s [185].

Web tracking has expanded from simple HTTP cookies to include more persistent

tracking techniques to “respawn” or re-instantiate HTTP cookies through Flash cook-

ies [295], cache E-Tags, and other browser storage locations [47]. Overall, tracking is

moving from stateful to stateless techniques: device fingerprinting attempts to iden-

tify users by a combination of the device’s properties [110, 193], and trackers derive

identifiers from a user’s PII [93]. Such techniques have advanced quickly [130,232,256],

and are now widespread on the web [30,65,246].

Our work provides an detailed view of web tracking, but it does not examine

the many other ways in which trackers can collect information about users. Most

closely related is tracking in mobile applications, which is technically similar and

often performed by the same companies [320]. As with web tracking, mobile tracking

is pervasive. Razaghpanah et al. find a consolidated mobile app tracking ecosystem:

Google and Facebook are present in 73% and 31% of the 14,599 apps they study,

and they find a long tail of hundreds of additional trackers [275]. These results

are strikingly similar to the distribution of trackers we measure on the top websites

(Section 4.1.3). Related research has found that mobile applications commonly leak

user data [115, 348]—while free applications leak data more often, paid applications

aren’t much better [291]. Companies have also been found to collect tracking data

through other consumer products, including smart TVs [132] and Internet of Things

(IoT) devices [89]. More broadly, users data is collected through the use of store

loyalty cards [79], online surveys [32], and public records [31].

Web tracking ostensibly exists to support behavioral advertisement on the web;

advertisers can use a user’s browsing history and other personal data to show them ads

more relevant to their interests. The use of behavioral targeting by advertisers

18

has grown significantly in recent years [81,203,214]. A 2015 study found that

26-62% of ads shown to their measurement personas used behavioral targeting [81].

Despite strong growth in the use of behavioral targeting, there has

been a lack of research showing that the returns from targeted advertis-

ing alone justify the increased data collection. Past research that suggests

behaviorally targeted advertising is effective [56, 140, 342] has been questioned by

later work for being unrepresentative [220] and for failing to correct for selection

biases [125]. Lambrecht et al. find that retargeted ads which use individual data gen-

erally perform worse than those that use brand information, suggesting that detailed

individual data collection may not be necessary [187]. Schmeiser finds that special

interest websites—those which cater to a specific interest of the user—may actually

lose revenue by participating in targeted advertising networks [286].

Web tracking data has many uses beyond behavioral advertising. It has

been used to calculate credit scores [26, 89], to target political messaging [27], and

to predict an individual’s health risks for insurance purposes [88]. China has experi-

mented with a “Social Credit System” system, which goes beyond typical financial or

health risk assessment systems to rate an individual’s overall “trustworthiness” [20].

Alibaba, one of eight companies chosen to implement a prototype of the system, uses

behavioral data in their calculation of the score [25].

2.1.1 Stateful web tracking

Third-party trackers can track users across websites by storing a unique identifier

on the user’s device, a process known as “stateful tracking”. Modern web browsers

provide several APIs that can be used to store persistent information, including HTTP

cookies [53], the Web Storage API (i.e., localStorage and sessionStorage) [224],

the IndexedDB API [328], and Flash Local Shared Objects (LSOs) [35]. In addition

to using APIs designed for storage, web sites can also use indirect means to store

19

an identifier — any API that persists data on the user’s device is a candidate for

such abuse. For example, trackers can encode identifiers in HTTP Strict Transport

Security (HSTS) flags [304], or use the web browser’s cache to store an identifier via

an E-Tag [47]. A tracker’s access to each of these APIs depends on several conditions:

1. Whether the tracker has script access to the page. Passive resources, such as

images and HTML videos, are not able to access the Web Storage or IndexedDB

APIs, as these APIs only have script interfaces. HTTP cookies and cache E-

Tags are set and retrieved by HTTP requests and responses, and thus can still

be used by passive resources.

2. The frame in which the tracker is loaded. Web pages consist of a series of nested

rendering contexts, each with its own origin, often defined as the scheme, host,

and port from which the main document of that context was loaded.2 Each

storage location has an access policy that may depend on the origin of the

resource itself (e.g., E-Tags), the origin of the context in which the resource was

loaded (e.g., the Web Storage API), or both (e.g., HTTP cookies) [162].

3. The set of access policies applied by the browser. Some browsers restrict access

to certain APIs (such as the IndexedDB API) when the user is in a privacy-

focused browsing mode [36]. Other browsers apply more restrictive policies to

all browsing modes, such as Safari’s third-party cookie blocking [339].

Most commonly, trackers will use HTTP cookies to store their identifiers. The

HTTP cookie interface was the first stateful interface added to the browser [185],

and is accessible through both an HTTP interface and a Javascript interface. A

web server can use the Set-Cookie header in an HTTP response to store arbitrary

2The modern web’s origin concept [54] is more complex than a simple scheme, host, and port
definition. As an example, a sandboxed iframe is given a unique origin, regardless of the origin of
the resource [337]. Some browsers have extended the web’s origin to include additional keys, such
as the host of the top-level frame [326].

20

data in a cookie keyed by its domain, and will receive the contents of that cookie

in a Cookie header for each subsequent HTTP request to its domain. Scripts can

also use the document.cookie interface to access the cookies associated with the

rendering context in which they’re embedded. As of January 2018, the majority of

modern browsers allow both third-party and first-party content to set and retrieve

cookies during each page visit—Safari being a notable exception [339]. In response

to privacy concerns of third-party tracking via cookies, browser vendors have given

users additional controls over HTTP cookies: most built-in private browsing modes

use a temporary set of cookies distinct from those used in regular modes [36], several

browsers provide options to clear cookies on shutdown [268], and users can block

third-party cookies [306].

Web tracking has expanded from simple HTTP cookies to include techniques that

provide less user control. Trackers can also store identifiers in other locations within

the browser by using the browsers own storage APIs, or by abusing other stateful

features. Browser vendors have historically failed to provide the same level of user

control over other stateful APIs as they have provided for HTTP cookies [55,66,68,69],

which causes data stored in these alternative locations to persist after a user tries

to clear their cookies. Identifiers stored elsewhere in the browser can be used to

“respawn” HTTP cookies, i.e., recreate HTTP tracking cookies after they have been

cleared. An example of HTTP cookie respawning is given in Figure 2.1.

As an example of cookie respawning, Figure 2.1 depicts the stages of respawning

by Local Shared Objects (LSOs), also known as Flash cookies. Whenever a user visits

a site that respawns cookies, the site issues an ID and stores it in multiple storage

mechanisms, including cookies, LSOs, and localStorage. In Figure 2.1a, the value 123

is stored in both HTTP and Flash cookies. When the user removes her HTTP cookie

(Figure 2.1b), the website places a cookie with the same value (123) by reading the

ID value from a Flash cookie that the user may fail to remove (Figure 2.1c).

21

HTTP
CookiesLSOs

id=123 id=123

HTTP
CookiesLSOs

id=123

HTTP
CookiesLSOs

id=123 id=123

(1) Read

(2) Write

(a)

HTTP
CookiesLSOs

id=123 id=123

HTTP
CookiesLSOs

id=123

HTTP
CookiesLSOs

id=123 id=123

(1) Read

(2) Write

(b)

HTTP
CookiesLSOs

id=123 id=123

HTTP
CookiesLSOs

id=123

HTTP
CookiesLSOs

id=123 id=123

(1) Read

(2) Write

(c)

Figure 2.1: Respawning HTTP cookies by Flash evercookies: (a) the webpage stores
an HTTP and a Flash cookie (LSO), (b) the user removes the HTTP cookie, (c) the
webpage respawns the HTTP cookie by copying the value from the Flash cookie.

In 2010, Samy Kamkar demonstrated the “Evercookie,” a resilient tracking mech-

anism that utilizes multiple storage vectors including Flash cookies, localStorage,

sessionStorage and ETags [163]. Kamkar employed a variety of novel techniques,

such as printing ID strings into a canvas image which is then force-cached and read

from the cached image on subsequent visits. In addition to those supported by the

evercookie library, a number of other APIs were also found to be vulnerable to use in

cookie respawning. These include HTTP Strict Transport Security (HSTS) flags [157],

HTTP Public Key Pinning (HPKP) flags [123], cached intermediate certificate au-

thorities [73], and DNS cache [128]. Bujlow et al. [75] and Mayer and Mitchell [220]

provide a detailed survey of web tracking methods.

Measurement studies. Krishnarmurthy and Wills [181] provide much of the

early insight into web tracking, showing the growth of the largest third-party orga-

nizations from 10% to 20-60% of top sites between 2005 and 2008. In the following

years, studies show a continual increase in third-party tracking and in the diversity

of tracking techniques [30,39,122,159,220,280]. Lerner et al. also find an increase in

the prevalence and complexity of tracking, as well as an increase in the interconnect-

edness of the ecosystem by analyzing Internet Archive data from 1996 to 2016 [198].

Fruchter et al. studied geographic variations in tracking [131]. More recently, Libert

studied third-party HTTP requests on the top 1 million sites [201], providing view

22

of tracking across the web. In this study, Libert showed that Google can track users

across nearly 80% of sites through its various third-party domains.

In Chapter 4 we study stateful web tracking on the top 1 million websites. We

find a long but thin tail of web trackers, showing that only 4 companies are present

on 10% or more of sites (Section 4.1.3), show that news sites have the most trackers

(Section 4.1.5), and find that blocking tools miss less popular trackers (Section 4.1.6).

A 2009 study by Soltani et al. showed the abuse of Flash cookies for regenerating

previously removed HTTP cookies [295]. They found that 54 of the 100 most popular

sites (rated by Quantcast) stored Flash cookies, of which 41 had matching content

with regular cookies. Soltani et al. then analyzed respawning and found that several

sites, including aol.com, about.com and hulu.com, regenerated previously removed

HTTP cookies using Flash cookies. A follow up study in 2011 found that sites use

ETags and HTML5 localStorage API to respawn cookies [47]. These discoveries led

to media backlash [199, 229] and legal settlements [101, 293] against the companies

participating in the practice. However several follow-up studies by other research

groups confirmed that, despite a reduction in usage (particularly in the U.S.), the

technique is still used for tracking [223,280]. Our follow-up measurement in Section 4.2

agrees with these findings. In a recent study, Sorensen analyzed the use of cache as a

persistent storage mechanism and found several instances of HTTP cookies respawned

from cached page content [299].

There are various client-side tools to block, limit or visualize third-party tracking.

These are too numerous to list exhaustively, but a sampling include Adblock Plus,

Ghostery, ShareMeNot [8], Lightbeam, and TrackingObserver [9]. Studies that have

quantified the privacy effect of these tools include [49,137,215,220,225]. We examine

the performance of several popular tracking protection tools in Section 4.1.6.

23

aol.com
about.com
hulu.com

2.1.2 Stateless tracking

Stateless tracking is a persistent tracking technique that does not require a tracker

to set any state in the user’s browser. Instead, trackers attempt to identify users

by a combination of the device’s properties, both those available from network re-

quests (passive fingerprinting) and those which can be queried through Javascript

or Flash (active fingerprinting). Unlike the stateful tracking techniques discussed in

Section 2.1.1, users have few options to control stateless tracking identifiers.

Tracking with network identifiers

Every network request to a third-party server will include information that can iden-

tify the user – namely IP address and the User-Agent string. The stability and

uniqueness of an IP address depends on the network configuration; multiple users

may share an IP address due to residential NATs [209] or carrier-grade NATs [278],

and short address renewal policies may lead to a churn in addresses [266].

Yen et al. show how IP, cookies and usernames can be combined to track devices

reliably even when any one of these identifiers may be individually unreliable [345].

While Yen et al. [345] identify NATs as a possible source of error in tracking users,

more recent work has shown that NATs can be useful in linking multiple devices

belonging to the same user [351]. We further discuss cross-device tracking in Sec-

tion 2.1.5.

Trackers may also be able to take advantage of “enriched” headers that contain

tracking IDs injected by ISPs [217]. Header injection is especially common on mobile

networks, where carriers have been found to inject device identifiers (such as an

IMEI), operator-generated advertising identifiers, and the internal IP address of the

subscriber [319].

24

Device fingerprinting

In 2009 Mayer studied several active fingerprinting sources3, including device proper-

ties available from the navigator, screen, Plugin, and MimeType APIs. He found a

mostly unique set of fingerprints across about 1,300 clients [219]. In 2010 Eckersley

examined 470,161 device fingerprints collected on the EFF’s Panopticlick test page [7].

In additional to the techniques used by Mayer, the Panopticlick device fingerprints

included system fonts, HTTP Accept headers, and the device’s User-Agent header.

Eckersley found that about 84% of the devices tested had a unique fingerprint. More

recently, a study by Laperdrix et al. [193] of over 100,000 fingerprints found that 90%

of desktops and 81% of mobile devices tested had unique fingerprints.

New fingerprinting vectors are continually discovered, including: the Canvas and

WebGL APIs [232], the Battery Status API [256], font metrics [130], performance

metrics [231], the JavaScript engine [239], the rendering engine [315], clock skew [168],

HTTP/2 features [289], device motion sensors [63, 98, 99, 104], protocol handlers [6],

and mouse scroll wheel events [22]. Boda et al. [62] and Cao et al. [78] showed how

a combination of these features can be used to track users across browsers on the

same device. Alaca and van Oorschot studied the use of device fingerprinting for web

authentication [38]. Finally, Unger et al. [315], studied the potential use of device

fingerprinting as a defense mechanism against HTTP session hijacking.

Defenses. Device fingerprinting has proven difficult to mitigate; users can’t rea-

sonably be expected to change their own device’s fingerprint. By measuring repeat

visits to Panopticlick, Eckersley found that device fingerprints change over time, with

37.4% of repeat visitors exhibiting more than one fingerprint [7]. However, he was able

to correctly re-identify 65% of devices using a fairly simple string similarity heuristic.

The Tor Browser provides broad fingerprinting resistance by disabling or normalizing

APIs which can be used for fingerprinting, but can also lead to site breakage [4].

3Mayer refers to browser fingerprinting as device “quirkiness”.

25

Several researchers have explored alternative approaches to mitigate fingerprint-

ing. Besson et al. [58] examined the theoretical boundaries of fingerprinting defenses

using Quantified Information Flow. Boda et al. developed FireGloves, a Firefox

extension that fakes several common navigator and screen features and randomizes

element properties used for font discovery [61, 62]. Nikiforakis et al. refine this idea,

developing Privaricator, which uses a set of randomization policies to minimize the

linkability of a device across sites while also minimizing site breakage [245]. By ran-

domizing device features the user will have a different fingerprinting for each page

visit, making it harder to use their fingerprint to track them across sites. Using an

Chromium implementation of Privaricator, Nikiforakis et al. show that randomiza-

tion is an effective fingerprinting defense with relatively low site breakage. Laperdrix

et al. follow a similar approach in FPRandom, a modified version of Firefox that

adds randomization to the Canvas and AudioContext APIs [191]. Laperdrix et al.

also propose randomizing device features at the platform level and introduce Blink, a

prototype system to automatically provides this randomization through virtual ma-

chines [192].

Measurement studies. Two studies measured the prevalence of different fin-

gerprinting mechanisms and evaluated existing countermeasures [30,246]. Nikiforakis

et al. studied three previously known fingerprinting companies and found 40 such

sites among the top 10K sites employing practices such as font probing and the use

of Flash to circumvent proxy servers [246]. Acar et al. found that 404 sites in the

top million deployed JavaScript-based fingerprinting and 145 sites of the top 10,000

sites leveraged Flash-based fingerprinting [30]. In Chapter 5 we examine fingerprint-

ing on the top websites. We perform the first large scale measurements of the use of

several HTML5 APIs for fingerprinting, including: Canvas (Section 5.1.2), WebRTC

(Section 5.1.4), Audio (Section 5.1.5), and Battery (Section 5.1.6).

26

Figure 2.2: A diagram of the cookie syncing process.
(1) The user’s browser makes a request for embedded content from A.com. This
request includes the user’s cookie for A.com, with value user id=12345.
(2) A.com returns a 302 redirect to B.com, embedding the cookie value it uses to
track the user.
(3) The user’s browser makes a new request to B.com, which includes both A.com’s
name and cookie value embedded in the query string. Since this request is to a new
server, the user’s browser sends a different cookie.
(4) B.com can link the information in the query string to the user’s cookie. Thus,
B.com learns that the user it refers to as XYZ is known as 12345 by A.com.

2.1.3 Cookie syncing

Cookie synchronization or cookie syncing is the practice of tracker domains passing

pseudonymous IDs associated with a given user, typically stored in cookies, amongst

each other. Figure 2.2 shows one possible implementation of cookie syncing. Domain

A passes an ID to domain B by making a request to a URL hosted by domain B

which contains the ID as a parameter string. According to Google’s developer guide

to cookie syncing (which they call cookie matching), cookie syncing provides a means

for domains to share cookie values, given the restriction that sites can’t read each

other cookies, in order to better facilitate targeting and real-time bidding [17].

Olejnik et al. studied cookie syncing, and found that over 100 cookie syncing

events happen on the top 100 sites [262]. The authors consider cookie synchronization

both as a means of detecting business relationships between different third-parties

but also as a means of determining to what degree user data may flow between

parties, primarily through real-time bidding. We provide further insight into the use

27

of cookie syncing in the wild, presenting large-scale usage measurements (Section 4.3)

and examining the implications of ubiquitous cookie syncing (Section 4.3.4).

2.1.4 Personally Identifiable Information (PII) leakage

The ability of trackers to compile information about users is further aided by

PII leaks from first parties to third parties. PII leakage is often inadvertent:

a user’s email address or user ID is be embedded in a publisher URL (e.g.,

example.com/profile?user=userID) and ends up leaking to a number of third-

party servers via the Referer header. Referer header leaks are amplified by the

availability of the leaking URI via the document.referrer API on subsequent page

load or in embedded iframes. PII leakage can also be intentional, where a first party

shares information with a third party for business purposes. PII leaks can allow

trackers to attach identities to pseudonymous browsing histories.

In the past, PII leakage was mostly in the hands of first parties; accidental leakage

could only be prevented if a first party took care to ensure no user information was

included in their site’s URLs. However, the recent Referrer-Policy standard has

made it possible for browser vendors, extension authors, and sites to control the scope

of the Referer header sent to third-party resources [112]. Policies can be specified to

strip Referer headers down to the URL’s origin or remove it entirely for cross-origin

resources. In January 2018 Mozilla announced that it will apply a default origin-only

Referrer-Policy starting in the Private Browsing mode of Firefox 59 [97].

Measurement studies. Early work by Krishnamurthy and Wills found that

both intentional and unintentional PII leakage were common in social networks [183,

184]. In follow-up studies, Krishnamurthy et al. [180] and Mayer [216] showed that

leakage is common across the web—around half of the websites studied leaked user

identifiers to a third party. Mayer found PII leaks to as many as 31 separate third

28

parties on a single site, and discovered an instance of dating profile intentionally

leaking profile data to two major data brokers [216].

More recent work includes detection of PII leakage to third parties in smartphone

apps [277, 318], PII leakage in contact forms [302], and data leakage due to browser

extensions [303]. In our work we discover PII exfiltration within emails (Section 6.1),

and by tracking (Section 6.2) and analytics (Section 6.2.4) scripts on the web.

Obfuscated PII. The common problem faced by authors of past work (and

by us) is that PII may be obfuscated before collection. When the data collection

is crowdsourced [277, 318] rather than automated, there is the further complication

that the strings that constitute PII are not specified by the researcher and thus not

known in advance. On the other hand, crowdsourced data collection allows obtaining

numerous instances of each type of leak, which might make detection easier.

Early work recognizes the possibility of obfuscated PII, but accepts it as a limi-

tation [183, 184, 216]. Various approaches are taken in the work that follows. Ren et

al. employ heuristics for splitting fields in network traffic and detecting likely keys;

they then apply machine learning to discriminate between PII and other fields [277].

Starov et al. apply differential testing, that is, varying the PII entered into the system

and detecting the resulting changes in information flows [302]. Brookman et al. [65]

and Starov et al. [303] test combinations of encodings and/or hashes, which is most

similar to the approach we take in Chapter 6.

2.1.5 Cross-device tracking

Stateful tracking (Section 2.1.1) and device fingerprinting (Section 2.1.2) are limited

to tracking a user on a single device. In practice, a user’s browsing can be spread

across multiple desktops, laptops, and/or mobile devices. According to a January

2018 Pew study, 77% of American adults own a smartphone, which surpassed the

percentage of desktop and laptop users (at 73%) [83]. Trackers wishing to follow

29

users across multiple devices have developed deterministic and probabilistic tech-

niques collectively referred to as “cross-device tracking”.

A user’s identity is a major deterministic cross-device tracking signal. Devices are

tied to a persistent user-derived identifier—a name, an email address, or a username—

that can be used to link devices as belonging to the same user. Trackers with a first-

party presence, such as Facebook or Google, can easily track a user across devices

by linking new devices to a user’s profile once the user authenticates to one of the

tracker’s sites or applications. Trackers without a first-party presence must rely on

indirect methods of obtaining identifying information. We present several examples

of surreptitious exfiltration of personal data in Chapter 6. Brookman et al. found

data sharing of this type on 16 of the top 100 sites [65].

Side channels can also be used to link devices in close physical proximity. The

prototypical example involves ultrasonic beacons. One of the user’s devices emits

a unique ultrasonic beacon, and another device in the immediate area records the

beacon and uses the encoded identifier to link the two together. Arp et al. showed that

modern electronic devices can reliably transmit and receive near-ultrasonic signals,

and found that humans subjects were unable to reliably detect the beacons in the

presence of background audio [46]. In addition, Mavroudis et al. [213] and Arp [46]

show that ultrasonic tracking has been deployed on the Android app ecosystem via

the SilverPush library.

In the absence of deterministic signals, trackers can use a number of probabilis-

tic features to link devices. Zimmeck et al. examine relevant patent and industry

documents and find that IP address and browsing history are often used to link

devices [351]. The long tail of user’s browsing history is often enough to uniquely

identify them [259], and devices connected on residential networks often share the

same IP address [209]. By creating their own cross-device tracking dataset, Zimmeck

30

et al. show that even these basic industry approaches can achieve over 80% accuracy,

with high precision and recall [351].

If a tracker lacks the data necessary to track a user across devices, they can instead

cookie sync (Section 2.1.3) with another tracker who provides cross-device tracking

as a service. In Chapter 6 we examine and measure the tracking techniques used by

several companies which offer such services.

2.1.6 Tracking in emails

Email tracking is possible because modern graphical email clients allow rendering

a subset of HTML. JavaScript is invariably stripped, but embedded images and

stylesheets are allowed. Compared to web tracking, email tracking does not use

fingerprinting (Section 2.1.2) because of the absence of JavaScript. On the other

hand, email readily provides a unique, persistent, real-world identifier, namely the

email address.

An email’s external resources are downloaded and rendered by the email client

when the user views the email (unless they are proxied by the user’s email server).

Crucially, many email clients, and almost all web browsers, in the case of webmail,

send third-party cookies with these requests, allowing linking to web profiles. The

email address is leaked by being encoded as a parameter into these third-party URLs.

When link which point to the sender’s website are clicked, the resulting leaks are

outside the control of the email client or the email server. Even if the link doesn’t

contain any identifier, the web browser that opens the link will send the user’s cookie

with the request. The website can then link the cookie to the user’s email address;

this link may have been established when the user provided her email address to the

sender via a web form. Finally, the sender can pass on the email address—and other

personally identifiable information (PII), if available—to embedded third parties using

methods such as redirects and referrer headers.

31

The literature on email security and privacy has focused on authentication of

emails and the privacy of email contents. For example, Durumeric et al. found that

the long tail of SMTP servers largely fail to deploy encryption and authentication,

leaving users vulnerable to downgrade attacks, which are widespread in the wild [109].

Holz et al. also found that email is poorly secured in transit, often due to configuration

errors [158]. In Section 6.1 we study an orthogonal problem. Securing email in transit

will not defend against email tracking, nor will email tracking defenses provide security

for emails in transit.

Closest to our work are two papers by Fabian et al. [124] and Bender et al. [57].

Fabian et al. create a detection criteria for email tracking pixels and links based

on URL structure and HTML attributes. They find that email tracking is present

across nearly all of the 600 German newsletters studied [124]. In a follow-up study,

Bender et al. make the observation that many emails contain tracking pixels from

companies unrelated to the newsletter or mailing list manager—an effect which is

most pronounced in the United States [57]. In Section 6.1 we perform an in-depth

study of email trackers and examine their close integration with web tracking.

2.2 The role of web tracking in government

surveillance

The body of research described in Section 2.1 helps us understand what trackers

themselves can learn, it does not address what an eavesdropper can by watching iden-

tifier leaks on the web. The latter is influenced by many additional factors including

geographic location of the trackers and the adoption of HTTPS by websites.

In recent years, a combination of technical research, leaks, and declassifications

has provided unprecedented transparency into Internet surveillance by governments.

Some nations, such as Iran and Bahrain [114], practice near-total Internet monitoring.

32

Others, including the United States and Britain, have large-scale technical capacity—

but subject to legal limits. This section explains how the National Security Agency

(NSA) and Government Communication Headquarters (GCHQ) have used third-party

cookies in their respective surveillance programs, as well as briefly discusses the laws

that govern surveillance of Internet traffic within the United States.

2.2.1 NSA and GCHQ use of third-party cookies

Leaked documents reflect at least three ways in which the NSA has used third-party

cookies obtained from its Internet intercepts. First, the agency has investigated pas-

sively identifying Tor users by associating cookies with non-Tor sessions. Specifically,

the NSA attempted to link a Google third-party advertising cookie between Tor and

non-Tor sessions [308].

Second, the agency has an active, man-in-the-middle system (“QUANTUM-

COOKIE”) that induces cookie disclosure [308]. Applications include identifying Tor

users and targeting malware delivery.

Third, the agency has used passively obtained cookies to target active man-in-

the-middle exploitation. On at least one occasion, the NSA offered a Google cookie

to single out a user for exploitation [296].

In addition to these specific applications, HTTP analytical tools (such as

“XKEYSCORE”) incorporate cookie data. An analyst could easily take advantage

of third-party cookies when querying intercepted data [144].

Several leaked documents also reveal two GCHQ programs for surveilling and

targeting users via third-party tracking data, both from web browsers and mobile

applications. One such program is “MUTANT BROTH”, a repository of tracking

cookies linked with additional metadata such as IP addresses and User-Agent strings.

This repository is reported to have been used for targeted malware delivery [135].

33

The other program, “BADASS”, offers a similar repository and search interface

for querying information leakage from mobile apps. The system collects and extracts

leaked identifiers, device and operating system details, and additional information

transmitted in plaintext [196].

2.2.2 United States Internet monitoring

The law surrounding NSA authority derives from a complex mixture of constitutional

doctrine, statutory restrictions, and executive regulation. One emergent property is

that, when at least one party to a communication is a non-US person (i.e., not a

permanent resident or citizen of the US), and that party is located outside the United

States, that party is eligible for warrantless surveillance.4 “Upstream” interception

devices, controlled by the NSA and foreign partners, are exposed to large volumes

of this “one-end foreign” Internet traffic. While the details remain classified, it also

appears that a substantial quantity of one-end foreign traffic is temporarily retained.

Leaks indicate that at least some installations of “XKEYSCORE,” a distributed

analysis system, maintain a multi-day buffer of Internet traffic [50].

2.2.3 Surveillance: attacks, defenses, and measurement

While there is a large body of work on what a passive adversary can infer about users,

virtually all of it concerns attacks arising from side-channels in encrypted traffic,

particularly Tor. While Tor is insecure against a global passive adversary, traffic

analysis attacks have been studied with respect to passive and active adversaries with

less comprehensive access to the network [240, 241]. Website fingerprinting allows a

local eavesdropper to determine which of a set of web pages the user is visiting,

4One-end foreign wireline interceptions inside the United States are generally governed by Section
702 of the FISA Amendments Act [251, 273]. Two-end foreign interceptions and one-end foreign
wireless interceptions inside the United States are generally governed by Executive Order 12333.
Interceptions outside the United States are also generally governed by Executive Order 12333 [12].

34

even if the connection is encrypted, by observing packet lengths and other features

[154, 156, 265, 267]. Other side-channel attacks include timing attacks on SSH [297],

leaks in web forms, [85] and inferring spoken phrases from VoIP [338].

By contrast, in we study users who do not use network-level anonymity tools.

The adversary’s main challenge is not attacking encrypted traffic, but rather linking

different unencrypted traffic flows to the same (real-world) identity.

Closer to our work, Arnbak and Goldberg studied how the NSA could actively

redirect U.S. traffic abroad, so as to bring it within broader surveillance authorities

[45].5 The IXMaps tool allows users to interactively view the routes taken by their

traffic and intersection with known NSA wiretapping sites [91].

In Chapter 7 we study how well a passive network adversary can link and de-

anonymize a user’s HTTP web traffic under several technical and legal models. We

find that an adversary can typically link between 62 and 75% of a user’s traffic,

although they are much less successful when legal restrictions are applied. Vanrykel

et al. apply a similar analysis to traffic originating from mobile applications and find

that a global passive adversary can link 57% of a user’s traffic [323].

2.3 The state of privacy review in web standards

Modern web browsers provide many features that can be abused by web trackers

(Section 2.1). The additional tracking surface exposed by a new feature is often

unintended. In some cases when abuse is discovered, the feature specification is

updated or additional controls are added to the browser to allow users to mitigate the

privacy risk. Examples include the addition of user preferences to restrict WebRTC

after it was discovered that scripts were using it to harvest local IP addresses [21],

5It is not apparent whether the NSA has redirected traffic in this manner, nor is it apparent
whether the agency would consider the practice lawful.

35

or the additional state management controls added to Flash after trackers started

respawning HTTP cookies from Flash storage (Section 2.1.1).

We examine the standardization process and the extent to which privacy review

occurs during that process. In Section 5.2 we dig deeper, presenting a case study

of the Battery Status API, which was removed from multiple browsers following the

discovery of privacy and fingerprinting risks—an unprecedented reaction by browser

vendors. We use the lessons learned from this case study to make concrete recom-

mendations for improving the process (Section 5.2.3).

2.3.1 The W3C standardization process

The W3C employs a maturity level model in the standardization process [11]. Specifi-

cations start as a community group Working Draft and may undergo several revisions

while the scope and content is refined. Once the specification is ready for a final re-

view by a wide audience, it will progress to a Candidate Recommendation. The W3C

formally calls for implementations at this stage, although in practice they may already

exist. Feedback from the Candidate Recommendation and experience gathered from

implementations is used to refine the specification further. If the specification requires

no substantive changes it will progress to a Proposed Recommendation. After a final

set of endorsements a specification will progress to a full W3C Recommendation.

The lengthy standardization process is consensus-driven. The stakeholders of a

standard are generally organized into Working Groups, typically comprised of em-

ployees of browser vendors and other technology companies. To reach consensus, all

members must agree on a decision. Other Working Groups, such as those specializing

in privacy, accessibility, or web architecture may give their input on aspects of the

specification relevant to their mission. Additionally, the specification Working Group

must provide evidence of wide review, which includes reviews by a number of external

parties: the public (i.e. researchers) and NGOs (some of whom are W3C members).

36

Privacy reviews often happen during the draft stage, although the depth of reviews

can vary. As of 2018, the official W3C Process Document [11] does not require a

privacy review. In practice, reviews are often performed prior to a draft entering the

Candidate Recommendation level. A privacy consideration section can be normative,

in which the statements included are requirements that an implementation must

follow to be compliant with the specification. Alternatively, the section can be non-

normative, which is used to provide extra information, context, or recommendations

that an implementation is not required to adhere to.

The W3C’s Technical Architecture Group (TAG), which aims to build consensus

on principles of web architecture, published the Security and Privacy Self-Review

Questionnaire [334]. The questionnaire exists to help authors, TAG, and others assess

the privacy and security impacts of a specification. It recommends that authors review

their specifications under several different threat models and asks a series of questions

related to data access and quality. The W3C also has the Privacy Interest Group

(PING), which provides guidance and advice for addressing privacy in standards [14].

2.3.2 W3C privacy assessment practices and requirements

Privacy reviews in specifications often focus on how the proposed design impacts web

tracking. Past studies have shown that trackers frequently use many browser tech-

nologies to track users: by using stateful mechanisms like cookies, localStorage, and

Flash storage to respawn cleared identifiers (Section 2.1.1), and by identifying a device

solely by its properties (Section 2.1.2). The W3C’s TAG has identified these advanced

tracking behaviours as “actively harmful to the Web, because [they are] not under the

control of users and not transparent” [248]. In response to fingerprinting concerns,

the W3C’s PING released a Working Group Note to provide guidance to specification

authors on how to address and mitigate fingerprinting in their specifications [107].

37

When data is identified as potentially sensitive, such as that which relates to the

user’s device, behavior, location, or environment, various W3C specifications have

applied different restrictions on access to that data. Some specifications have made

the data available only in the top level browsing context (i.e. where access from

third-party scripts is limited) [24], and others provide data only in a secure context

(i.e. among other restrictions, requiring TLS) [350]. This type of data access also

frequently requires user permission before any potentially sensitive information is

made available. The Web Permissions API is a draft specification of a mechanism

that allows users to manage these types of permissions in a user-friendly way [189].

2.3.3 Past privacy assessment research

Several studies have examined how privacy assessments are conducted as part of the

specification process. Nick Doty identifies and addressees the challenges of privacy

reviews in standardization bodies [108]. Doty describes the history of security and

privacy consideration sections in Request for Comments (RFC), IETF specifications,

and W3C specifications. RFC 6973 describes how design choices in internet protocols

may impact privacy, and provides guidelines for drafting of Privacy Considerations

sections in RFC documents [95]. Similarly, Frank Dawson describes a methodology

for drafting the privacy considerations sections of W3C standards [102]. Dawson high-

lights the importance of privacy assessments during each stage of a draft specification

and the need for an open process to incorporate the findings of external research.

38

Chapter 3

OpenWPM: A web measurement

platform

Web privacy measurement has proven effective in controlling the actions of compa-

nies [127, 317]. On the other hand, web privacy measurement presents formidable

engineering and methodological challenges. In the absence of a generic tool, it has

been largely confined to a niche community of researchers.

We seek to transform web privacy measurement into a widespread practice by

creating a tool that is useful not just to our colleagues but also to regulators, self-

regulators, the press, activists, and website operators, who are often in the dark about

third-party tracking on their own domains. We also seek to lessen the burden of

continual oversight of web tracking and privacy, by developing a robust and modular

platform for repeated studies.

OpenWPM (Section 3.1) solves three key systems challenges faced by the web

privacy measurement community. It does so by building on the strengths of past

work, while avoiding the pitfalls made apparent in previous engineering efforts. (1)

We achieve scale through parallelism and robustness by utilizing isolated measure-

ment processes similar to FPDetective’s platform [30], while still supporting stateful

39

measurements. We’re able to scale to 1 million sites, without having to resort to

a stripped-down browser [201] (a limitation we explore in detail in Section 3.1.3).

(2) We provide comprehensive instrumentation by expanding on the rich browser

extension instrumentation of FourthParty [220], without requiring the researcher to

write their own automation code. (3) We reduce duplication of work by providing a

modular architecture to enable code re-use between studies.

Alongside OpenWPM we introduce a set of core measurement methods (Sec-

tion 3.2) which solve many common web measurement tasks. We describe how Open-

WPM data can be used to classify third-party content (Section 3.2.1) and trackers

(Section 3.2.2) across the web and in emails. We present several options for browsing

models and make recommendations on when to use them (Section 3.2.3). We describe

how we detect tracking cookies (Section 3.2.4) and PII leakage (Section 3.2.5). Lastly,

we further explore how we monitor Javascript calls (Section 3.2.6).

3.1 The design of OpenWPM

An infrastructure for automated web privacy measurement has three components:

simulating users, recording observations (response metadata, cookies, behavior of

scripts, etc.), and analysis. We set out to build a platform that can automate the

first two components and can ease the researcher’s analysis task. We sought to make

OpenWPM general, modular, and scalable enough to support essentially any privacy

measurement.

OpenWPM is open source and has already been used for measurement in 22

academic studies. Section 3.1.4 examines the advanced features used by several of

these studies. Nearly all of the measurements analyzed in this dissertation were

collected using OpenWPM.

40

3.1.1 Previous web tracking measurement platforms

Web tracking researchers have created a number of tools for detecting and measuring

tracking and privacy, such as FPDetective [30] and FourthParty [220]. OpenWPM

builds on similar technologies as many of these platforms, but has several key design

differences to support modular, comprehensive, and maintainable measurement. In

some cases, we built directly upon existing platforms, which we make explicit note

of.

FPDetective is the most similar platform to OpenWPM. FPDetective uses a hybrid

PhantomJS and Chromium based automation infrastructure [30], with both native

browser code and a proxy for instrumentation. FPDetective was used for the detection

and analysis of fingerprinters, and much of the included instrumentation was built to

support that [30]. The platform allows researchers to conduct additional experiments

by replacing a script which is executed with each page visit, which the authors state

can be easily extended for non-fingerprinting studies.

OpenWPM differs in several ways from FPDetective: (1) it supports both state-

ful and stateless measurements, whereas FPDetective only supports stateless1 (2) it

includes generic instrumentation for both stateless and stateful tracking, enabling a

wider range of privacy studies without additional changes to the infrastructure (3)

none of the included instrumentation requires native browser code, making it eas-

ier to upgrade to new or different versions of the browser, and (4) OpenWPM uses

a high-level command-based architecture, which supports command re-use between

studies.

Chameleon Crawler is a Chromium based crawler that utilizes the Chameleon2

browser extension for detecting browser fingerprinting. Chameleon Crawler uses

1Stateful measurements are important for studying the tracking ecosystem. Ad auctions may
vary based on cookie data. A stateless browser always appears to be a new user, which skews cookie
syncing measurements. In this work, we’ve used stateful measurements to study cookie syncing
(Section 4.3), cookie respawning (Section 4.2), and to replicate realistic user profiles (Section 7.2.1).

2https://github.com/ghostwords/chameleon

41

https://github.com/ghostwords/chameleon

similar automation components, but supports a subset of OpenWPM’s instrumen-

tation. OpenWPM’s Javascript monitoring uses techniques originally developed for

Chameleon Crawler.

FourthParty is a Firefox plug-in for instrumenting the browser and does not handle

automation [220]. OpenWPM has incorporated and expanded upon nearly all of

FourthParty’s instrumentation (Section 3.1).

WebXray is a PhantomJS based tool for measuring HTTP traffic [201]. It has

been used to study third-party inclusions on the top 1 million sites, but as we show

in Section 3.1.3, measurements with a stripped-down browser have the potential to

miss a large number of resource loads.

TrackingObserver is a Chrome extension that detects tracking and exposes APIs

for extending its functionality such as measurement and blocking [280].

XRay [194] and AdFisher [100] are tools for running automated personalization

detection experiments. AdFisher builds on similar technologies as OpenWPM (Sele-

nium, xvfb), but is not intended for tracking measurements.

Common Crawl3 uses an Apache Nutch based crawler. The Common Crawl

dataset is the largest publicly available web crawl4, with billions of page visits. How-

ever, the crawler used does not execute Javascript or other dynamic content during a

page visit. Privacy studies which use the dataset [285] will miss dynamically loaded

content, which includes many advertising resources.

Crowd-sourcing of web privacy and personalization measurement is an important

alternative to automated browsing. $heriff and Bobble are two platforms for mea-

suring personalization [227, 340]. Two major challenges are participant privacy and

providing value to users to incentivize participation.

Many past platforms rely on native instrumentation code [30,244,294], which have

a high maintenance cost and, in some cases a high cost-per-API monitored. In our

3https://commoncrawl.org
4https://aws.amazon.com/public-data-sets/common-crawl/

42

https://commoncrawl.org
https://aws.amazon.com/public-data-sets/common-crawl/

Task
Manager

Data
Aggregator

WWW

Selenium
Browser
Manager

Browser

...

Browser
Manager

Browser

Browser
Manager

Browser

Instrumentation Layer

Analysis
Scripts

Selenium

Selenium

Figure 3.1: High-level overview of OpenWPM
The task manager monitors browser managers, which convert high-level commands
into automated browser actions. The data aggregator receives and pre-processes data
from instrumentation.

platform, the cost of monitoring new APIs is minimal (Section 3.1.3) and APIs can

be enabled or disabled in the add-on without recompiling the browser or rendering

engine. This allows us to monitor a larger number of APIs. Native codebase changes

in other platforms require constant merges as the upstream codebase evolves and

complete rewrites to support alternative browsers.

3.1.2 Design and Implementation

We divided our browser automation and data collection infrastructure into four main

modules: browser managers which act as an abstraction layer for automating individ-

ual browser drivers, a user-facing task manager which serves to distribute commands

to browser managers, and a data aggregator, which acts as an abstraction layer for

browser instrumentation. The researcher interacts with the task manager via an ex-

tensible, high-level, domain-specific language for crawling and controlling the browser

instance. The entire platform is built using Python and Python libraries.

43

Browser driver: Providing realism and support for web technologies.

We considered a variety of choices to drive measurements, i.e., to instruct the browser

to visit a set of pages (and possibly to perform a set of actions on each). The

two main categories to choose from are lightweight browsers like PhantomJS (an

implementation of WebKit), and full-fledged browsers like Firefox and Chrome. We

chose to use Selenium, a cross-platform web driver for Firefox, Chrome, Internet

Explorer, and PhantomJS. We currently use Selenium to drive Firefox, but Selenium’s

support for multiple browsers makes it easy to extend support to others in the future.

By using a consumer browser, all technologies that a typical user would have access

to (e.g., HTML5 storage options, Adobe Flash) are also supported by measurement

instances. The alternative, PhantomJS, does not support WebGL, HTML5 Audio

and Video, CSS 3-D, and browser plugins (like Flash), making it impossible to run

measurements on the use of these technologies [272]. In retrospect this has proved

to be a sound choice. Without full support for new web technologies we would not

have been able to discover and measure the use of the AudioContext API for device

fingerprinting as discussed in Section 5.1.5.

Finally the use of real browsers also allows us to test the effects of consumer

browser extensions. We support running measurements with extensions such as

Ghostery and HTTPS Everywhere as well as enabling Firefox privacy settings such

as third-party cookie blocking and the Tracking Protection feature. New extensions

can easily be supported with only a few extra lines of code (Section 3.1.3). See Sec-

tion 4.1.6, Section 5.1.7, Section 7.4, and Section 7.3.4 for analyses of measurements

run with these browser settings.

Browser managers: Providing stability.

During the course of a long measurement, a variety of unpredictable events such as

page timeouts or browser crashes could halt the measurement’s progress or cause data

44

loss or corruption. A key disadvantage of Selenium is that it frequently hangs indef-

initely due to its blocking API [290], as it was designed to be a tool for webmasters

to test their own sites rather than an engine for large-scale measurements. Browser

managers provide an abstraction layer around Selenium, isolating it from the rest of

the components.

Each browser manager instantiates a Selenium instance with a specified config-

uration of preferences, such as blocking third-party cookies. It is responsible for

converting high-level platform commands (e.g., visiting a site) into specific Selenium

subroutines. It encapsulates per-browser state, enabling recovery from browser fail-

ures. To isolate failures, each browser manager runs as a separate process.

We support launching measurement instances in a “headless” container, by us-

ing the pyvirtualdisplay library to interface with Xvfb, which draws the graphical

interface of the browser to a virtual frame buffer.

Task manager: Providing scalability and abstraction.

The task manager provides a scriptable command-line interface for controlling mul-

tiple browsers simultaneously. Commands can be distributed to browsers either syn-

chronized or first-come-first-serve. Each command is launched in a per-browser com-

mand execution thread.

The command-execution thread handles errors in its corresponding browser man-

ager automatically. If the browser manager crashes, times out, or exceeds mem-

ory limits, the thread enters a crash recovery routine. In this routine, the manager

archives the current browser profile, kills all current processes, and loads the archive

(which includes cookies and history) into a fresh browser with the same configuration.

45

Data aggregator: Providing repeatability.

Repeatability can be achieved by logging data in a standardized format, so research

groups can easily share scripts and data. We aggregate data from all instrumentation

components in a central and structured location. The data aggregator receives data

during the measurement, manipulates it as necessary, and saves it on disk keyed back

to a specific page visit and browser. The aggregator exists within its own process,

and is accessed through a socket interface which can easily be connected to from any

number of browser managers or instrumentation processes.

We currently support two data aggregators: a structured SQLite aggregator for

storing relational data and a LevelDB aggregator for storing compressed web content.

The SQLite aggregator stores the majority of the measurement data, including data

from both the proxy and the extension (described below). The LevelDB aggregator

is designed to store de-duplicated web content, such as Javascript or HTML files.

The aggregator checks if a hash of the content is present in the database, and if not

compresses the content and adds it to the database.

Instrumentation: Supporting comprehensive and reusable measurement.

OpenWPM provides several hooks for data access: (1) raw data on disk, (2) at the

network level with an HTTP probes in a Firefox extension, and (3) at the Javascript

level with page script probes injected by our extension. This provides nearly full

coverage of a browser’s interaction with the web and the system. Each level of in-

strumentation keys data with a unique visit id and the current browser id, making

it possible to combine measurement data from multiple instrumentation sources for

each page visit.

Disk Access — We include instrumentation that collects changes to Flash LSOs

and the Firefox cookie database after each page visit. This allows a researcher to

46

determine which domains are setting Flash cookies, and to record access to cookies

in the absence of other instrumentation

HTTP Data — HTTP data is collected in a Firefox extension5 through the

browser’s internal HTTP events6. We used Fourthparty [220] as a starting point

and extend their probes in a number of ways:

• Save request and response bodies in addition to headers. We parse and save

HTTP request POST bodies. This instrumentation has proven useful in detect-

ing PII exfiltration (Section 6.2.4). We also provide the option to save HTTP

response content, either for all responses or only for scripts. The former can

be used to fully audit a site visit, while the later is useful in verifying script

activity.

• Explicitly link HTTP redirects. HTTP redirects are common in advertising;

trackers use HTTP redirects to run ad auctions, to cookie sync, and to exfiltrate

and share PII (Section 6.2). HTTP header fields can be used to trace redirects,

but the process is error prone.7 To link HTTP redirects explicitly, we use

Firefox’s internal channelId, which is normally used to identify channels across

process boundaries. We overwrite asyncOnChannelRedirect to log a mapping

between channelIds during an HTTP redirect.

5Earlier versions of OpenWPM used Mitmproxy (https://mitmproxy.org/) to record all HTTP
request and response headers. To capture HTTPS traffic we generated a self-signed certificate and
loaded it into Firefox. Several of the measurements included in this dissertation were collected with
the proxy instrumentation (e.g., Section 4.1 and Chapter 7). While proxy-based HTTP instrumen-
tation is more modular, extension-based instrumentation provides much deeper context for each
request and response.

6The internal Observer Notifications (https://developer.mozilla.org/en-US/
docs/Mozilla/Tech/XPCOM/Observer_Notifications) monitored by our extension are:
http-on-modify-request which provides access to request headers and POST bodies,
http-on-examine-response which provides access to response headers and content, and two
additional response events for cached responses (http-on-examine-cached-response and
http-on-examine-merged-response).

7Linking requests across redirects using only HTTP data has several sources of ambiguity and
errors. The browser may upgrade the scheme, expand relative URLs, or drop a malformed header
entirely. A URL may be requested and subsequently redirected in both the main frame and in
nested iframes, leaving only the Referer header to disambiguate the traffic. Referer headers may
be stripped or truncated depending on the page’s Referrer policy.

47

https://mitmproxy.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Observer_Notifications
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Observer_Notifications

• Gather additional internal context for each request. Browser request and re-

sponse objects contain additional context beyond what is exposed to the net-

work, including: whether the request is an XHR, the document in which the

resource is loaded as well as the document which triggered the load, the ele-

ment type responsible for the load, and whether the browser considers the load

third-party. We record all of this context alongside each request.

• Record the call context for requests triggered by Javascript. The full call stack

associated with a request is usually available through the browser’s developer

tools. We use the same interfaces to retrieve and parse the callstack for each

HTTP request. The call stack allows the researcher to discover which script

or scripts were involved in triggering a resource request. Example uses include

tracking down the source of a PII leak (Section 6.2) or determining the script

responsible for a cookie sync.

Javascript Calls — OpenWPM’s Javascript instrumentation makes it possible

to monitor property accesses or script calls for any browser API. OpenWPM can

monitor any built-in object, and will record all property accesses and method calls on

a monitored object. In addition, any arguments passed to a method or values set on a

property will be saved. This works even for Javascript files which have been minified

or obfuscated with eval. Everything is logged directly to the SQLite aggregator.

We used Fourthparty’s [220] Javascript call monitoring as a starting point.

Fourthparty uses an ES6 Proxy object to define custom getters and setters on

the window.navigator and window.screen interfaces.8 We take a more direct

approach—we directly replace the getter and setter functions for all accessor

properties on an object or object prototype of interest. Object data properties,

which don’t have get and set descriptor properties to overwrite, are converted to

8In the latest public version of Fourthparty (May 2015) this instrumentation is not functional
due to API changes in Firefox.

48

accessor properties. The new get and set functions first log the access and the

return the origin value (in the case of data properties) or call the original method

(in the case of accessor properties). We make several additional extensions beyond

Fourthparty:

• Recursively instrument objects. OpenWPM can monitor access to nested object

by instrumenting return values on-the-fly. Instrumented method calls which

return objects will also have those objects instrumented before passing them

to the calling script. Any further interaction with the returned object will be

logged by OpenWPM.

• Detect and prevent tampering. In an adversarial situation, a script could disable

our instrumentation before fingerprinting a user by overriding access to getters

and setters for each instrumented object. However, this would be detectable

since we would observe access to the define{G,S}etter or lookup{G,S}etter

methods for the object in question and could investigate the cause.9

• Record access to new APIs. In addition to window.screen and window.navigator

we monitor access to the following interfaces: Storage, document.cookie,

HTMLCanvasElement, CanvasRenderingContext2D, RTCPeerConntection,

BatteryManager, and AudioContext. We also monitor the prototype objects

for several children of AudioNode.

• Record the call and frame context for each access. In addition to recording

access to instrumented objects, we record the full call stack at the time of

access. To do so, we throw an Error and parse the stack trace after each call or

property intercept. This method is adapted from the Privacy Badger Firefox

extension10. We also record both the current and top-level document URLs at

9In our 1 million site measurement, we only observe script access to getters or setters for
HTMLCanvasElement and CanvasRenderingContext2D interfaces. All of these are benign accesses
from 47 scripts total, with the majority related to an HTML canvas graphics library.

10https://github.com/EFForg/privacybadgerfirefox

49

https://github.com/EFForg/privacybadgerfirefox

the time of access, which can let the researcher determine in which frame the

access occurred.

Example workflow.

When a researcher uses OpenWPM the following workflow walks through the steps

the platform takes when a command is issued.

1. The researcher issues a command to the task manager and specifies that it

should synchronously execute on all browser managers.

2. The task manager checks all of the command execution threads and blocks until

all browsers are available to execute a new command.

3. The task manager creates new command execution threads for all browsers

and sends the command and command parameters over a pipe to the browser

manager process.

4. The browser manager interprets this command and runs the necessary Selenium

code to execute the command in the browser.

5. If the command is a “Get” command, which causes the browser to visit a new

URL, the browser manager distributes the visit ID and top-level page being

visited to all enabled instrumentation modules (extension and disk monitor).

6. Each instrumentation module uses this information to properly key data for the

new page visit.

7. The browser manager can send returned data (e.g. the parsed contents of a

page) to the SQLite aggregator.

8. Simultaneously, instrumentation modules send data to the respective aggrega-

tors from separate threads or processes.

50

9. Finally, the browser manager notifies the task manager that it is ready for a

new command.

3.1.3 Evaluation

Stability. We tested the stability of vanilla Selenium without our infrastructure in

a variety of settings. The best average we were able to obtain was roughly 800 pages

without a freeze or crash. Even in small-scale studies, the lack of recovery led to

loss or corruption of measurement data. Using the isolation provided by our browser

manager and task manager, we recover from all browser crashes and have observed

no data corruption during stateful measurements of 100,000 sites. During the course

of our stateless 1 million site measurement in January 2016 (Section 4.1), we observe

over 90 million requests and nearly 300 million Javascript calls. A single instrumented

browser can visit around 3500 sites per day, requiring no manual interaction during

that time. The scale and speed of the overall measurement depends on the hardware

used and the measurement configuration (See “Resource Usage” below).

Completeness. OpenWPM reproduces a human user’s web browsing experience

since it uses a full-fledged browser. However, researchers have used stripped-down

browsers such as PhantomJS for studies, trading off fidelity for speed.

To test the importance of using a full-fledged browser, we examined the differences

between OpenWPM and PhantomJS (version 2.1.1) on the top 100 Alexa sites. We

averaged our results over 6 measurements of each site with each tool. Both tools

were configured with a time-out of 10 seconds and we excluded a small number of

sites that didn’t complete loading. Unsurprisingly, PhantomJS does not load Flash,

HTML5 Video, or HTML5 Audio objects (which it does not support); OpenWPM

loads nearly 300 instances of those across all sites. More interestingly, PhantomJS

loads about 30% fewer HTML files, and about 50% fewer resources with plain text

and stream content types. Upon further examination, one major reason for this is

51

that many sites don’t serve ads to PhantomJS. This makes tracking measurements

using PhantomJS problematic.

We also tested PhantomJS with the user-agent string spoofed to look like Firefox,

so as to try to prevent sites from treating PhantomJS differently. Here the differences

were less extreme, but still present (10% fewer requests of html resources, 15% for

plain text, and 30% for stream). However, several sites (such as dropbox.com) seem

to break when PhantomJS presents the incorrect user-agent string. This is because

sites may expect certain capabilities that PhantomJS does not have or may attempt to

access APIs using Firefox-specific names. One site, weibo.com, redirected PhantomJS

(with either user-agent string) to an entirely different landing page than OpenWPM.

These findings support our view that OpenWPM enables significantly more complete

and realistic web and tracking measurement than stripped-down browsers.

Resource usage. When using the headless configuration, we are able to run up

to 10 stateful browser instances on an Amazon EC2 “c4.2xlarge” virtual machine11.

This virtual machine costs around $300 per month using price estimates from March

2018. Due to Firefox’s memory consumption, stateful parallel measurements are

memory-limited while stateless parallel measurements are typically CPU-limited and

can support a higher number of instances. On the same machine we can run 20

browser instances in parallel if the browser state is cleared after each page load.

Generality. The platform minimizes code duplication both across studies and

across configurations of a specific study. For example, the Javascript monitoring in-

strumentation is about 340 lines of Javascript code. Each additional API monitored

takes only a few additional lines of code. The instrumentation necessary to measure

canvas fingerprinting (Section 5.1.2) is three additional lines of code, while the We-

bRTC measurement (Section 5.1.4) is just a single line of code. Similarly, the code to

add support for new extensions or privacy settings is relatively low: 7 lines of code

11https://aws.amazon.com/ec2/instance-types/

52

https://aws.amazon.com/ec2/instance-types/

Study Year B
ro

w
se

r
au

to
m

at
io
n

St
at

ef
ul

m
ea

su
re

m
en

ts

Ext
en

sio
n

su
pp

or
t

Plu
gi
n

su
pp

or
t

A
ut

om
at

ed
lo
gi
n

C
on

te
nt

sa
vi

ng

M
on

ito
r
st
at

e
ch

an
ge

s

Ja
va

sc
rip

t
In

st
ru

m
en

ta
tio

n

C
on

te
nt

ex
tr
ac

tio
n

FB Connect login permissions [279] 2014 • • ◦
HSTS and key pinning misconfigurations [178] 2015 • • • ◦ •
The Web Privacy Census [39] 2015 • • • •
Geographic variations in tracking [131] 2015 • •
Analysis of malicious web shells [301] 2016 •
Web trackers can deanonymize cryptocurrencies [141] 2017 • • ◦
Effects of tracking protection [221] 2017 • • • • •

Table 3.1: Several studies which use OpenWPM for measurements.
An unfilled circle indicates that the feature was useful but application-specific pro-
gramming or manual effort was still required.

were required to support Ghostery, 8 lines of code to support HTTPS Everywhere,

and 7 lines of codes to control Firefox’s cookie blocking policy.

Even measurements themselves require very little additional code on top of the

platform. Each configuration listed in Table 4.1 requires between 70 and 108 lines of

code. By comparison, the core infrastructure code and included instrumentation is

over 5100 lines of code plus an additional 2300 lines of code in tests, showing that

the platform saves a significant amount of engineering effort.

3.1.4 Applications of OpenWPM

Twenty one academic studies have used OpenWPM to perform a variety of web

privacy and security measurements [29,39,40,59,65,119,120,121,141,178,200,204,207,

221,228,260,276,279,287,301] and two have made use of our public datasets [59,305].12

Table 3.1 summarizes the advanced features of the platform used by several research

papers.

Several research groups take advantage of the OpenWPM’s use of a real browser,

including to run measurement instances with Flash enabled [39] and to measure the

effects of privacy browser extensions on tracking [221]. Goldfeder et al. modify

12This count includes the 5 published papers this dissertation is based on [29,119,120,121,260]

53

OpenWPM to run interactive sessions where a researcher can go through a check-

out procedure with all of the platform’s instrumentation enabled [141]. Others use

OpenWPM solely for its robust automation [204, 301]. Maass et al. additionally use

OpenWPM to run PrivacyScore13, their on-demand scanning service which bench-

marks a website’s privacy practices [207].

3.2 Core web privacy measurement methods

OpenWPM serves as a common measurement platform for all of our studies. Com-

plementary to OpenWPM, we’ve developed a set of core measurement methods which

we’ve used across many of the studies incldued in this dissertation. Study-specific

measurement methods are described in their respective chapters.

3.2.1 Distinguishing third-party from first-party content

Nearly all of our measurements require us to distinguish between first-party and

third-party content, as only third-party content can be used to track cross-site or

cross-email. This distinction is not always clear; many websites use several distinct

domains for security and organizational purposes. The distinction is even less clear

for email content, where the rendered document is not retrieved from a web server.

On the web. To determine if a request is a first-party or third-party request, we

utilize the URL’s “public suffix + 1” (or PS+1). A public suffix “is one under which

Internet users can (or historically could) directly register names. [Examples include]

.com, .co.uk and pvt.k12.ma.us.” A PS+1 is the public suffix with the section of the

domain immediately proceeding it (not including any additional subdomains). We

use Mozilla’s Public Suffix List14 in our analysis. We consider a site to be a poten-

13https://privacyscore.org/
14https://publicsuffix.org/

54

https://privacyscore.org/
https://publicsuffix.org/

tial third-party if the PS+1 of the site does not match the landing page’s PS+1.15

Throughout this dissertation we use the word “domain” to refer to a site’s PS+1.

We use this method throughout the dissertation, in Chapter 4, Chapter 5, Chapter 6,

and Chapter 7.

A first party may choose to use multiple domains to serve their content. As an ex-

ample, example.com may serve static resources from example-static.com. In order

to avoid over counting third-party domains when presenting aggregate statistics, we

sometimes require a domain classified as third-party to appear on at least 2 separate

first parties.

In emails. Many email clients load embedded content directly from remote

servers. Thus, remote content present in multiple emails can track users in the same

way third-party content can track users across sites on the web. However, unlike

the web there isn’t always a clear distinction of which requests are “third-party” and

which are “first-party”. For example, all resources loaded by webmail clients are

considered third-party by the browser. We consider any request to a domain which

is different than both the domain on which we registered for the mailing list and the

domain of the sender’s email address to be a third-party request. We use this method

to classify third-party requests in our email tracking measurements in Section 6.1.

3.2.2 Identifying trackers

Every third party is potentially a tracker, but for many of our results we need a more

conservative definition. We use two popular tracking-protection lists for this purpose:

EasyList and EasyPrivacy. Including EasyList allows us to classify advertising related

trackers, while EasyPrivacy detects non-advertising related trackers. The two lists

15We use a heuristic to determine the landing page URL in HTTP proxy data, which is given in
Appendix A.1. HTTP data collected by our extension includes the loading tab’s URL with every
record, and thus does not require this heuristic.

55

consist of regular expressions and URL sub-strings which are matched against resource

loads to determine if a request should be blocked.

Alternative tracking-protection lists exist, such as the list built into the Ghostery

browser extension and the domain-based list provided by Disconnect16. Although we

don’t use these lists to classify trackers directly, we evaluate their performance in

several sections.

Note that we are not simply classifying domains as trackers or non-trackers, but

rather classify each instance of a third party on a particular website as a tracking

or non-tracking context. We consider a domain to be in the tracking context if a

consumer privacy tool would have directly blocked that resource.17 Resource loads

which wouldn’t have been directly blocked by these extensions are considered non-

tracking. We classify tracking domains around the web (Section 4.1) and in emails

(Section 6.1).

While there is agreement between the extensions utilizing these lists, we empha-

size that they are far from perfect. They contain false positives and especially false

negatives. That is, they miss many trackers—new ones in particular. Indeed, much

of the impetus for OpenWPM and our measurements comes from the limitations of

manually identifying trackers. Thus, tracking-protection lists should be considered an

underestimate of the set of trackers, just as considering all third parties to be trackers

is an overestimate.

3.2.3 Browsing Models

A number of factors must be taken into consideration when choosing a browsing model

for measurements. Do the crawls need to approximate the profile of a real user? If

so, a browsing model which takes into account the probability of a user visiting a

16https://disconnect.me/trackerprotection
17We only consider domains which directly match a filter to be trackers. In practice, a privacy tool

may end up preventing a non-matching resource from loading by blocking the matching resource
that embeds it or redirects to it.

56

https://disconnect.me/trackerprotection

site is appropriate. Is a tracking technique expected to be present on all pages of a

site? If so, more sites can be reached by only visiting the homepage of each site. If

not, the researcher may need to spider within sites at the expense of visiting fewer

sites overall. We identify several trade offs that must be considered when choosing a

browsing model and describe the models used in our own measurements.

Simulating real users versus sampling popular sites. First, a researcher

should consider whether it’s necessary to simulate real user browsing patterns, or

if a simple sample of the popular sites is sufficient. Past researchers have taken

numerous approaches to simulating real user browsing patterns. A study of price

discrimination modeled histories of “affluent” and “budget” shoppers based on Alexa

categories [227]. Several other studies used Alexa category lists to simulate users with

topical interests [227,262]. Other choices include the Quantcast list of top sites with

demographic breakdowns [150] and Google search results for topical keywords [227].

Another study simulated users issuing search queries (to Bing) of pseudonymous users

in the leaked AOL search log dataset, followed by visiting the top 5 results returned

by Bing [203].

The majority of our measurements provide a cross-section of tracking on the web.

As such, we primarily use a browsing model which samples the most popular sites.

We use the Alexa top 1 million site list, which ranks sites based on their global

popularity with Alexa Toolbar users. Before each measurement, OpenWPM retrieves

an updated copy of the list. Depending on the measurement we may use the entire

list directly (Section 4.1.1), we may truncate the list at a certain rank (Section 6.1.1),

or we may sample across several distinct ranges of the list (Chapter 6). In Chapter 7

we measure the surveillance implications of web tracking we need to understand the

risks for an average web user—necessitating the use of a browsing model that better

approximates real users. For that measurement we use a modified AOL search query

approach, inspired by Liu et al. [203] (see Section 7.2.1 for a full description).

57

Homepage versus internal pages. In some measurements we visit only the

homepage of a site (Section 4.1), while for others we spider within pages (Chapter 6).

To understand the differences between the two, we compare aggregate statistics for

a crawl which visits only the homepage of the top 10,000 sites to one which visits 4

internal pages in addition to the homepage. We note several differences. The average

number of third parties per site increases from 22 to 34. The 20 most popular third

parities embedded on the homepages are found on 6% to 57% more sites when internal

page loads are considered. Similarly, fingerprinting scripts found in Section 5.1 were

observed on more sites. Canvas fingerprinting increased from 4% to 7% of the top

sites while canvas-based font fingerprinting increased from 2% to 2.5%.

These differences are expected as each additional page visit within a site will

cycle through new dynamic content that may load a different set of third parties.

Additionally, sites may not embed all third-party content into their homepages. In

general, the analyses presented in this dissertation should be considered a lower bound

on the amount of tracking present in the wild.

Measurement location. The majority of the measurements presented in this

dissertation were collected from Princeton, New Jersey or from Amazon’s US East

region. Fruchter, et al. [131] used OpenWPM to measure the variation in tracking

due to geographic differences, and found no evidence of tracking differences caused

by the origin of the measurement instance. However, they did not measure the use

of the more invasive tracking techniques studied in this dissertation, such as scripts

which exfiltrate PII from the page (see Chapter 6). These practices may be subject

to different regulatory restrictions in different locations.

Connection type. Many of our measurements are performed using Amazon’s

EC2 service. Sites may respond differently to requests which originate from a cloud

IP address rather than a consumer or commercial address. In fact, industry research

58

suggests that pages loaded on cloud machines receive 20-25% fewer tracking tags than

those loaded on consumer devices [23].

3.2.4 Detecting User IDs

In several of our measurements (Section 4.2, Section 4.3, and Section 7.2) we need

to detect cookies which store unique identifiers. Identifiers can be stored in many

locations (e.g. HTTP cookies, Flash cookies), but to be sent back to trackers the

identifiers must be included in HTTP cookies or query parameters of the request.

We choose to focus on HTTP cookies as they are included in every request and thus

provide a generic approach that does not necessitate the parsing of URL parameters.

However, the general method can be applied to other storage locations of a similar

format.

To be useful as identifiers, cookie values must have two important properties: per-

sistence over time and uniqueness across different browser instances. Based on these

criteria we develop an algorithm that classifies cookies as identifiers. Our algorithm

is intentionally conservative, since false positives risk exaggerating our results. Our

method does have some false negatives, but this is acceptable since it is in line with

our goal of establishing lower bounds for tracking.

Browsers store cookies in a structured key-value format, allowing sites to provide

both a name string and value string. In practice a site may store an identifier alongside

other, non-identifying data in the same value string. Many sites further structure the

value string of a single cookie to include a set of named parameters. We parse each

cookie value string assuming the format:

(name1 =)value1|...|(nameN =)valueN

59

where | represents any character except a-zA-Z0-9_-=.18 This provides us with a

set of parameter strings for each cookie.

We first filter all cookies which are not long-lived, i.e., those which have an ex-

piration time less than three months.19 We then define a cookie to be an identifier

cookie if the value of any parameter string meets the following criteria:

• Is stable, and remains constant through all page visits. Dynamic strings may

be timestamps or other non-identifiers.

• Is constant-length across all our datasets, and has a length between 8 and 100

characters.

• Is user-specific, so the values are unique across different browser instances in

our dataset.

• Is high-entropy, with values sufficiently different between machines to enable

unique identification. To test for this, we used the Ratcliff-Obershelp [60] algo-

rithm to compute similarity scores between value strings. We then filter out all

cookies with a similarity between measurements greater than or equal to 66%.20

We compare cookie value strings across synchronized measurement data. By us-

ing synchronized measurements, we avoid the problem of sites changing their cookie

interaction behavior depending on a user’s browsing time. For instance, in relation to

the entropy heuristic, cookies with values that depend on time stamps will be easier

to detect and ignore if the crawls have nearly the same timestamps for all actions.

A list of identifying cookies generated from synchronized data can then be used to

18This configuration is used in Section 4.3.7. The variations of this algorithm used in Section 4.3.2
and Chapter 7 use a simpler parameter parsing which simply splits the cookie value on a number of
common delimiters (e.g. : and &)

19Section 4.3.2 uses a variation of this algorithm in which cookies with an expiration time less
than 1 month are filtered.

20The similarity cutoff was refined throughout our measurements. Section 4.3.2 uses 33%, Sec-
tion 4.3.7 uses 66%, and Chapter 7 uses 55%.

60

a-zA-Z0-9_-=

detect identifying cookies in non-synchronized measurements by searching for cookies

with matching domain, name, and parameter name.

3.2.5 Detecting PII Leakage

PII may leak to remote servers through resource requests. Detecting these leaks is

not as simple as searching for PII in requests, since the information may be hashed

or encoded, sometimes iteratively. To detect such leakage we develop a methodology

that, given a set of encodings and hashes, a PII string, and a token from a resource

request, is able to determine if the token is a transformation of the PII. Starting

with the plaintext PII string we pre-compute a candidate set of tokens by applying

all supported encodings and hashes iteratively, stopping once we reach three nested

encodings or hashes. We then take the resource request token and apply all supported

decodings to the value, checking if the result is present in the candidate set. If not,

we iteratively apply decodings to the token until we reach a level of three nested

decodings.

In a preliminary measurement we found no examples of a value that was encoded

before being hashed. This is unsurprising, as hashed PII is used to sync data between

parties and adding a transformation before the hash would prevent that use case.

Thus, when analyzing requests, we restrict ourselves to at most three nested hashes

for a set of 24 supported hashes, including md5, sha1, sha256. For encodings, we

apply all possible combinations of 10 encodings, including base64, urlencoding,

and gzip. The full list of supported hashes and encodings is given in Appendix A.2.

Resource requests must be split into tokens for efficient processing. We developed

a set of parsing rules based on common patterns observed on the web.

• URL tokens: A URL is split into its components: host, path, query, and

fragment strings. We first remove any file extensions from the path, then split

it on the path separator (a forward slash), and finally tokenize each portion by

61

a set of common delimiters.21 The query and fragment strings are also split

on the same delimiters. We run the detection process on the request URL, the

Location header, and the Referer header.

• HTTP cookies: We parse Cookie headers using the Python cookies22 library.

We then use the same URL delimiters to split the cookie name and value

components.

• HTTP POST bodies: We found sites using a wide variety of formats for HTTP

POST request bodies, such that parsing on common formats was impossible.

Instead, we perform a substring search within the POST body content for all

nested encodings and hashes of the target PII. Although this process is signif-

icantly slower than checking tokens against a candidate set, the relatively low

frequency of POST requests makes this an acceptable cost in our analyses.

When detecting PII leaks on the web (Section 6.2) we check for leaks in all trans-

mission vectors. Leaks during email rendering (Section 6.1.3) are more constrained;

all modern email clients will not execute Javascript and generally don’t support in-

teractive forms. When detecting PII leaks during email rendering, we only examine

the request URL.

3.2.6 Measuring Javascript calls

Javascript minification and obfuscation hinder static analysis. Minification is used

to reduce the size of a file for transit. Obfuscation stores the script in one or more

obfuscated strings, which are transformed and evaluated at run time using eval

function. We find that fingerprinting and tracking scripts are frequently minified

or obfuscated, hence our dynamic approach. With our detection methodology, we

21The set of delimiters used to split strings from all storage locations is &, |, \, and ,. We chose
these delimiters by examining common structures on the web.

22https://github.com/sashahart/cookies

62

https://github.com/sashahart/cookies

intercept and record access to specific Javascript objects, which is not affected by

minification or obfuscation of the source code.

Using the Javascript calls instrumentation described in Section 3.1.2, we record

access to specific APIs which have been found to be used to be used by tracking

and fingerprinting scripts.23 Each time an instrumented object is accessed, we record

the full context of the access: the entire call stack, the top-level url of the site, the

property and method being accessed, any provided arguments, and any properties set

or returned. For each tracking method, we design a detection algorithm which takes

the context as input and returns a binary classification of whether or not a script uses

that method of tracking when embedded on that first-party site.

When manual verification is necessary, we have two approaches which depend on

the level of script obfuscation. If the script is not obfuscated we manually inspect

the copy which was archived according to the procedure discussed in Section 3.1.2. If

the script is obfuscated beyond inspection, we embed a copy of the script in isolation

on a dummy HTML page and inspect it using the Firefox Javascript Deobfuscator24

extension. We also occasionally spot check live versions of sites and scripts, falling

back to the archive when there are discrepancies.

23As an example, we monitor access to CanvasRenderingContext2D, which is used by
canvas fingerprinting scripts (see Section 5.1.2). The instrumentation can also be used
to detect non-fingerprinting related tracking; we monitor the window.body.innerHTML and
window.body.outerHTML to detect when a tracking script stringifies the DOM (see Section 6.2.4).

24https://addons.mozilla.org/en-US/firefox/addon/javascript-deobfuscator/

63

https://addons.mozilla.org/en-US/firefox/addon/javascript-deobfuscator/

Chapter 4

Web tracking is ubiquitous

In this chapter we report results from a January 2016 measurement of the top 1 mil-

lion sites (Section 4.1.1). Our scale enables a variety of new insights. We observe

for the first time that online tracking has a “long tail”, but we find a surprisingly

quick drop-off in the scale of individual trackers: trackers in the tail are found on very

few sites (Section 4.1.3). Using a new metric for quantifying tracking (Section 4.1.4),

we find that the tracking-protection tool Ghostery (https://www.ghostery.com/) is

effective, with some caveats (Section 4.1.6). We perform a targeted measurement of

cookie respawning, a tracking technique used to subvert efforts by users to protect

their privacy (Section 4.2). Lastly, we study cookie syncing, a workaround to the

Same-Origin Policy, which allows trackers to share identifiers with each other (Sec-

tion 4.3). We find that cookie syncing is pervasive (Section 4.3.7) and explore the

ways it which it can amplify tracking techniques which work against user privacy

(Section 4.3.5).

4.1 A 1-million-site census of online tracking

We run the Princeton Web Census, a monthly measurement on the homepages of

the top 1 million sites, to provide a comprehensive view of web tracking and web

64

https://www.ghostery.com/

privacy. These measurements provide updated metrics on the presence of tracking,

allowing us to shine a light onto the practices of third parties and trackers across a

large portion of the web. Throughout this dissertation we reference data collected by

the census measurements. In this section, we examine the results of our January 2016

measurement, and explore the effectiveness of consumer privacy tools at controlling

stateful web tracking.

4.1.1 Measurement configuration

Configuration # Sites # Success Timeout % Fla
sh

Ena
bl

ed

St
at

ef
ul

Par
al
le
l

H
T
T
P

D
at

a

Ja
va

sc
rip

t
File

s

Ja
va

sc
rip

t
C
al
ls

D
isk

Sc
an

s

Time to Crawl
Default Stateless 1 Million 917,261 10.58% • • • • 14 days
Default Stateful 100,000 94,144 8.23% ◦ • • • • 3.5 days
Ghostery 55,000 50,023 5.31% • • • • 0.7 days
Block TP Cookies 55,000 53,688 12.41% • • • • 0.8 days
HTTPS Everywhere 55,000 53,705 14.77% • • • • 1 day
ID Detection 1* 10,000 9,707 6.81% • • • • • • 2.9 days
ID Detection 2* 10,000 9,702 6.73% • • • • • • 2.9 days

Table 4.1: Census measurement configurations.
An unfilled circle indicates that a seed profile of length 10,000 was loaded into each
browser instance in a parallel measurement. “# Success” indicates the number of
sites that were reachable and returned a response. A Timeout is a request which
fails to completely load in 90 seconds. *Indicates that the measurements were run
synchronously on different virtual machines.

We ran our measurements on a “c4.2xlarge” Amazon EC2 instance, which al-

located 8 vCPUs and 15 GiB of memory per machine at the time of measurement

(January 2016). With this configuration we were able to run 20 browser instances

in parallel. OpenWPM was configured to collect HTTP Request and Response data

(via an HTTP proxy), Javascript calls, and Javascript files using the instrumentation

detailed in Section 3. Table 4.1 summarizes the measurement instance configurations.

For each site, the browser visited the homepage and waited until the site finished

loading or until a 90 second timeout was reached. The browser did not interact

with the site or visit any other pages within the site. In the event of a timeout, we

65

killed the process and restarted the browser for the next page visit, as described in

Section 3.1.2. At the completion of a page visit the browser was closed and all state

was cleared before starting the next page visit (with the exception of our stateful

measurement—see Section 4.1.2).

All measurements are run with Firefox version 41. The Ghostery measurements

use version 5.4.10 set to block all possible bugs and cookies. The HTTPS Everywhere

measurement uses version 5.1.0 with the default settings. The Block TP Cookies

measurement sets the Firefox setting to “block all third-party cookies”.

Handling errors. In presenting our results we only consider sites that loaded

successfully. For example, for the 1 Million site measurement, we present statistics for

917,261 sites. The majority of errors are due to the site failing to return a response,

primarily due to DNS lookup failures. Other causes of errors are sites returning a

non-2XX HTTP status code on the landing page, such as a 404 (Not Found) or a 500

(Internal Server Error).

4.1.2 Measuring stateful tracking at scale

To obtain a complete picture of tracking we must carry out stateful measurements in

addition to stateless ones. Stateful measurements do not clear the browser’s profile

between page visits, meaning cookie and other browser storage persist from site to

site. For some measurements the difference is not material, but for others, such as

cookie syncing (Section 4.3), it is essential.

Making stateful measurements is fundamentally at odds with parallelism. But a

serial measurement of 1,000,000 sites (or even 100,000 sites) would take unacceptably

long. So we make a compromise: we first build a seed profile which visits the top

10,000 sites in a serial fashion, and we save the resulting state. To scale to a larger

measurement, the seed profile is loaded into multiple browser instances running in

parallel. With this approach, we can approximately simulate visiting each website

66

serially. For our 100,000 site stateless measurement, we used the “ID Detection 2”

browser profile as a seed profile (see Table 4.1).

This method is not without limitations. For example third parties which don’t

appear on the top sites used for the seed profile will have different cookies set in

each of the parallel instances. If these parties are also involved in cookie syncing,

the partners that sync with them (and appear in the seed profile) will each receive

multiple IDs for each one of their own. This presents a trade-off between the size of

the seed profile and the number of third parties missed by the profile. We find that a

seed profile which has visited the top 10,000 sites will have communicated with 76%

of all third-party domains present on more than 5 of the top 100,000 sites. While this

naive approach provides reasonable coverage, the coverage can likely be improved for

future measurements by choosing the set of sites to visit during the seed crawl based

on the cookies observed in during previous measurements.

4.1.3 The long but thin tail of online tracking

During our January 2016 measurement of the Top 1 million sites, our tool made over

90 million requests, assembling the largest dataset on web tracking to our knowledge.

Our large scale allows us to answer a rather basic question: how many third parties

are there? In short, a lot: the total number of third parties present on at least two

first parties at the time of measurement was over 81,000.

What is more surprising is that the prevalence of third parties quickly drops off:

only 123 of these 81,000 were present on more than 1% of sites. This suggests that the

number of third parties that a regular user will encounter on a daily basis is relatively

small. The effect is accentuated when we consider that different third parties may be

owned by the same entity. All of the top 5 third parties, as well as 12 of the top 20,

were Google-owned domains. In fact, Google, Facebook, Twitter, and AdNexus were

the only third-party entities present on more than 10% of sites.

67

go
og

le-
an

aly
tic

s.c
om

gs
ta
tic

.co
m

do
ub

lec
lic

k.
ne

t

go
og

le.
co

m

fo
nt
s.g

oo
gle

ap
is.

co
m

fa
ce

bo
ok

.co
m

fa
ce

bo
ok

.n
et

aja
x.g

oo
gle

ap
is.

co
m

go
og

les
yn

dic
at
ion

.co
m

fb
cd

n.
ne

t

tw
itt

er
.co

m

go
og

lea
ds

er
vic

es
.co

m

ad
nx

s.c
om

go
og

leu
se
rc
on

te
nt
.co

m

blu
ek

ai.
co

m

m
at
ht
ag

.co
m

yo
ut
ub

e.c
om

yt
im

g.
co

m

go
og

let
ag

m
an

ag
er
.co

m

ya
ho

o.
co

m

0
10
20
30
40
50
60
70

%
F
ir
st

-P
ar

ti
es Tracking Context

Non-Tracking Context

Figure 4.1: Top third parties on the top 1 million sites in January 2016. Not all third
parties are classified as trackers, and in fact the same third party can be classified
differently depending on the context (see Section 3.2.2).

Further, if we use the definition of tracking based on tracking-protection lists,

as defined in Section 3.2.2, then trackers are even less prevalent. This is clear from

Figure 4.1, which shows the prevalence of the top third parties (a) in any context

and (b) only in tracking contexts. Note the absence or reduction of content-delivery

domains such as gstatic.com, fbcdn.net, and googleusercontent.com.

We can expand on this by analyzing the top third-party organizations, many of

which consist of multiple entities. As an example, Facebook and Liverail are sepa-

rate entities but Liverail is owned by Facebook. We use the domain-to-organization

mappings provided by Libert [201] and Disconnect [105]. As shown in Figure 4.2,

Google, Facebook, Twitter, Amazon, AdNexus, and Oracle were the third-party or-

ganizations present on more than 10% of sites. In comparison to Libert’s [201] 2014

findings, Akamai and ComScore fell significantly in market share to just 2.4% and

6.6% of sites. Oracle joined the top third parties by purchasing BlueKai and AddThis,

showing that acquisitions can quickly change the tracking landscape.

68

gstatic.com
fbcdn.net
googleusercontent.com

Go
og

le

Fa
ce
bo

ok

Tw
itt

er

Am
az
on

 A
dn

ex
us

Ora
cle

M
ed

ia
M
at
h

Ya
ho

o!

M
ax
CD

N

Au
to
mat

tic

co
mSc

or
e

Ope
nX
Ad

ob
e
AO

L

Ya
nd

ex

Cl
ou

dfl
are

Dat
alo

gix

Th
e T

ra
de

 D
es
k

Ru
bic

on
 P

ro
jec

t

Neu
sta

r
0

10
20
30
40
50
60
70
80
90

%
F
ir
st

-P
ar

ti
es Tracking Context

Non-Tracking Context

Figure 4.2: Organizations with the highest third-party presence on the top 1 million
sites in January 2016. Not all third parties are classified as trackers, and in fact the
same third party can be classified differently depending on the context (see Section
3.2.2).

Larger entities may be easier to regulate by public-relations pressure and the

possibility of legal or enforcement actions, an outcome we have seen in past studies

[29,47,223].

4.1.4 Prominence: a third party ranking metric

In Section 4.1.3 we ranked third parties by the number of first party sites on which

they appear. This simple count is a good first approximation, but it has two related

drawbacks. A major third party that’s present on (say) 90 of the top 100 sites would

have a low score if its prevalence drops off outside the top 100 sites. A related problem

is that the rank can be sensitive to the number of websites visited in the measurement.

Thus different studies may rank third parties differently.

The measurement community also lack a good way to compare third parties (and

especially trackers) over time, both individually and in aggregate. Some studies have

measured the total number of cookies [39], but we argue that this is a misleading

metric, since cookies may not have anything to do with tracking.

69

Site Prominence # of FP Rank Change

doubleclick.net 6.72 447,963 +2
google-analytics.com 6.20 609,640 −1
gstatic.com 5.70 461,215 −1
google.com 5.57 397,246 0
facebook.com 4.20 309,159 +1
googlesyndication.com 3.27 176,604 +3
facebook.net 3.02 233,435 0
googleadservices.com 2.76 133,391 +4
fonts.googleapis.com 2.68 370,385 −4
scorecardresearch.com 2.37 59,723 +13
adnxs.com 2.37 94,281 +2
twitter.com 2.11 143,095 −1
fbcdn.net 2.00 172,234 −3
ajax.googleapis.com 1.84 210,354 −6
yahoo.com 1.83 71,725 +5
rubiconproject.com 1.63 45,333 +17
openx.net 1.60 59,613 +7
googletagservices.com 1.52 39,673 +24
mathtag.com 1.45 81,118 −3
advertising.com 1.45 49,080 +9

Table 4.2: Top 20 third-parties on the Alexa top 1 million sites in January
2016, sorted by prominence. The number of first-party sites each third-party
was embedded on is included. Rank change denotes the change in rank be-
tween third-parties ordered by first-party count and third-parties ordered by
prominence.

To avoid these problems, we propose a principled metric. We start from a model

of aggregate browsing behavior. There is some research suggesting that the website

traffic follows a power law distribution, with the frequency of visits to the N th ranked

website being proportional to 1
N

[33,179]. The exact relationship is not important to

us; any formula for traffic can be plugged into our prominence metric below.

Definition:.

Prominence(t) = Σedge(s,t)=1
1

rank(s)

where edge(s, t) indicates whether third party t is present on site s. This simple

formula measures the frequency with which an “average” user browsing according to

the power-law model will encounter any given third party.

70

doubleclick.net
google-analytics.com
gstatic.com
google.com
facebook.com
googlesyndication.com
facebook.net
googleadservices.com
fonts.googleapis.com
scorecardresearch.com
adnxs.com
twitter.com
fbcdn.net
ajax.googleapis.com
yahoo.com
rubiconproject.com
openx.net
googletagservices.com
mathtag.com
advertising.com

The most important property of prominence is that it de-emphasizes obscure sites,

and hence can be adequately approximated by relatively small-scale measurements,

as shown in Figure 4.3. We propose that prominence is the right metric for:

1. Comparing third parties and identifying the top third parties. We present

the list of top third parties by prominence in Table 4.2. Prominence ranking

produces interesting differences compared to ranking by a simple prevalence

count. For example, Content-Distribution Networks become less prominent

compared to other types of third parties.

2. Measuring the effect of tracking-protection tools, as we do in Section 4.1.6.

3. Analyzing the evolution of the tracking ecosystem over time and comparing

between studies. The robustness of the rank-prominence curve (Figure 4.3)

makes it ideally suited for these purposes.

0 200 400 600 800 1000

Rank of third-party

10−3

10−2

10−1

100

101

P
ro
m
in
en
ce
(l
og
)

1K-site measurement
50K-site measurement
1M-site measurement

Figure 4.3: Prominence of third party as a function of prominence rank. We posit
that the curve for the 1M-site measurement (which can be approximated by a 50k-site
measurement) presents a useful aggregate picture of tracking.

4.1.5 News sites have the most trackers

The level of tracking on different categories of websites varies considerably—by almost

an order of magnitude. To measure variation across categories, we used Alexa’s lists

71

of top 500 sites in each of 16 categories. From each list we sampled 100 sites (the lists

contain some URLs that are not home pages, and we excluded those before sampling).

In Figure 4.4 we show the average number of third parties loaded across 100 of

the top sites in each Alexa category in January 2016. Third parties are classified as

trackers if they would have been blocked by one of the tracking protection lists (see

Section 3.2.2).

ne
ws ar

ts

sp
or
ts
ho
m
e

ga
m
es

sh
op
pin
g

av
er
ag
e

rec
rea
tio
n

reg
ion
al

kid
s a
nd
te
en
s

so
cie
ty

bu
sin
es
s

co
m
pu
te
rs

he
alt
h

sc
ien
ce

ref
ere
nc
e
ad
ult

0

10

20

30

40

50
Tracker
Non-Tracker

Figure 4.4: Average # of third parties in each Alexa category in January 2016.

Why is there so much variation? With the exception of the adult category, the

sites on the low end of the spectrum are mostly sites which belong to government

organizations, universities, and non-profit entities. This suggests that websites may

be able to forgo advertising and tracking due to the presence of funding sources

external to the web. In some cases there may be ethical or legal reasons for decreased

tracking; for example, US government websites are restricted by law in how they

can track users [250]. Sites on the high end of the spectrum are largely those which

provide editorial content. Since many of these sites provide articles for free, and

lack an external funding source, they may be pressured to monetize page views with

significantly more advertising. In the case of shopping sites, trackers may be present

to verify “conversions”, or purchases that are the result of advertising displayed or

clicked on another site.

72

10−4 10−3 10−2 10−1 100

Prominence of Third-party (log)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra
ct
io
n
of
T
P
B
lo
ck
ed

Figure 4.5: Fraction of third parties blocked by Ghostery in January 2016 as a function
of the prominence of the third party. As defined earlier, a third party’s prominence
is the sum of the inverse ranks of the sites it appears on.

4.1.6 Does tracking protection work?

Users have two main ways to reduce their exposure to tracking: the browser’s built

in privacy features and extensions such as Ghostery or uBlock Origin.

We found Firefox’s third-party cookie blocking to be effective. Specifically, only

237 sites (0.4%) had any third-party cookies set during our measurement set to block

all third-party cookies (“Block TP Cookies” in Table 4.1). Most of these were for

benign reasons, such as redirecting to the U.S. version of a non-U.S. site. We did

find exceptions, including 32 that contained ID cookies. For example, there were six

Australian news sites that first redirected to news.com.au before re-directing back to

the initial domain, which seemed to be for tracking purposes.

Another interesting finding is that when third-party cookie blocking was enabled,

the average number of third parties per site dropped from 17.7 to 12.6. Our working

hypothesis for this drop is that deprived of ID cookies, third parties curtail certain

tracking-related requests such as cookie syncing (which we examine in Section 4.3).

We also tested the Ghostery browser extension, and found that it was effective

at reducing the number of third parties and ID cookies (Figure 4.6). The average

number of third-party includes went down from 17.7 to 3.3, of which just 0.3 had

73

gs
ta

tic
.c

om

fo
nts

.g
oog

le
ap

is.
co

m

aj
ax

.g
oog

le
ap

is.
co

m

go
og

le
.c

om

boot
st

ra
pcd

n.c
om

yt
im

g.
co

m

cl
ou

dflar
e.

co
m

yo
utu

be.
co

m

jq
uer

y.c
om

w
p.c

om

s3
.a

m
az

on
aw

s.c
om

go
og

le
use

rc
on

te
nt.c

om

bai
du.c

om

m
ap

s.g
oog

le
ap

is.
co

m

qq.c
om

bp.b
lo

gs
pot

.c
om

ak
am

ai
hd.n

et

cd
nin

st
ag

ra
m

.c
om

tw
im

g.
co

m

jw
pcd

n.c
om

0
5

10
15
20
25
30
35

%
F

ir
st

-P
ar

ti
es

Figure 4.6: Third parties on the top 55k sites with Ghostery enabled in January
2016. The majority of the top third-party domains not blocked are CDNs or provide
embedded content (such as Google Maps).

third-party cookies (0.1 with IDs). We examined the prominent third parties that

were not blocked and found almost all of them to be content-delivery networks like

cloudflare.com or widgets like maps.google.com, which Ghostery did not try to

block. So Ghostery worked well at achieving its stated objectives.

However, the tool was less effective for obscure trackers (prominence < 0.1). In

Chapter 5 we examine device fingerprinting, and show that less prominent finger-

printing scripts were not blocked as frequently by blocking tools (Section 5.1.7). This

makes sense given that the block list is manually compiled and the developers are

less likely to have encountered obscure trackers. It suggests that large-scale measure-

ment techniques like ours will be useful for tool developers to minimize gaps in their

coverage.

4.2 Measuring Cookie Respawning

Evercookies are designed to overcome the “shortcomings” of the traditional tracking

mechanisms. By utilizing multiple storage vectors that are less transparent to users

and may be more difficult to clear, evercookies provide an extremely resilient tracking

74

cloudflare.com
maps.google.com

mechanism, and have been found to be used by many popular sites to circumvent

deliberate user actions [47, 101, 295]. In this section, we first provide a set of criteria

that we used to automatically detect identifier strings, present detailed results of an

automated analysis of respawning by Flash evercookies, and show the existence of

respawning by HTTP cookies.

4.2.1 Flash cookies respawning HTTP cookies

Although there are many “exotic” storage vectors that can be used to store tracking

identifiers, Flash cookies have a clear advantage of being shared between different

browsers that make use of the Adobe Flash plugin1. We developed a procedure

to automate the detection of respawning by Flash cookies employing the method

discussed in Section 3.2.4 to detect IDs and using GNU/Linux’s strace [166] debugging

tool to log access to Flash cookies.

Compared to earlier respawning studies [47, 223, 295], the method employed in

this section is different in terms of automation and scale. In prior studies, most of

the work, including the matching of HTTP and Flash cookie identifiers was carried

out manually. By automating the analysis and parallelizing the crawls, we were able

to analyze 10,000 websites, which is substantially more than the previous studies

(100 sites, 600 sites). Note that, similar to [223], we only visited the home pages,

whereas [47, 295] visited 10 internal links on each website. Another methodological

difference is that we maintained the Flash cookies when visiting different websites,

whereas [47, 295] used a virtual machine to prevent contamination. Last, [223] also

used the moving and contrasting Flash cookies from different computers to determine

ID and non-ID strings, which is one of the main ideas of the analysis described below.

For this analysis we used data from four different crawls. First, we sequentially

crawled the Alexa top 10,000 sites using OpenWPM and saved the accumulated

1iOS based devices and Chrome/Chromium bundled with the Pepper API are exceptions

75

HTTP and Flash cookies (Crawl1). We then made three 10,000 site crawls using

modCrawler2, two of which were run with the Flash cookies loaded from the sequential

crawl (Crawl2,3). The third crawler ran on a different machine, without any data

loaded from the previous crawl (Crawl4). Note that, except for the sequential crawl

(Crawl1), we ran multiple browsers in parallel to extend the reach of the study at

the cost of not keeping a profile state (cookies, localStorage) between visits. During

each visit, we ran an strace instance that logs all open, read and write system calls

of Firefox and all of its child processes. Trace logs were parsed to get a list of Flash

cookies accessed during the visit, which were then parsed and inserted into a crawl

database.

For the analysis, we first split the Flash cookie contents from the three crawls

(Crawl2,3,4) by using a common set of separators (e.g. ”=:&;). We then took the

common strings between crawls made with the same LSOs (Crawl2,3) and subtracted

the strings found in LSO contents from the unrelated crawl (Crawl4). We then

checked the cookie contents from the original profile (Crawl1) and cookies collected

during the visits made with the same LSO set (Crawl2,3). Finally, we subtracted

strings that are found in an unrelated visit’s cookies (Crawl4) to minimize the false

positives. Note that, in order to further eliminate false positives, one can use cook-

ies and LSOs from other unrelated crawls since an ID-string cannot be present in

unrelated crawls.

For clarity, we express a simplified form of the operation in set notation:

MaxRank⋃
i=1

((((F2i ∩ F3i) \ F4) ∩ C2i ∩ C3i) \ C4),

where Fni
denotes Flash cookies from Crawln for the site with the Alexa rank i,

Cni
denotes cookies from Crawln for the site with the Alexa rank i and F4, and C4

denotes all Flash cookies and HTTP cookies collected during Crawl4.

2modCrawler is a crawler under the FPDetective project [30], available at https://github.com/
fpdetective/modCrawler

76

https://github.com/fpdetective/modCrawler
https://github.com/fpdetective/modCrawler

Global
rank

Site CC
Respawning

(Flash) domain
1st/3rd
Party

16 sina.com.cn CN simg.sinajs.cn 3rd*
17 yandex.ru RU kiks.yandex.ru 1st
27 weibo.com CN simg.sinajs.cn 3rd*
41 hao123.com CN ar.hao123.com 1st
52 sohu.com CN tv.sohu.com 1st
64 ifeng.com HK y3.ifengimg.com 3rd*
69 youku.com CN irs01.net 3rd
178 56.com CN irs01.net 3rd
196 letv.com CN irs01.net 3rd
197 tudou.com CN irs01.net 3rd

Table 4.3: Top-ranked websites found to include respawning based on Flash cookies in
May 2014. CC: ISO 3166-1 code of the country where the website is based. 3rd*: The
domains that are different from the first-party but registered for the same company
in the WHOIS database.

We applied the method described above to four crawls run in May 2014 and found

that 33 different Flash cookies from 30 different domains respawned a total of 355

cookies on 107 first party domains during the two crawls (Crawl2,3). Table 4.3 shows

that on six of the top 100 sites, Flash cookies were used to respawn HTTP cookies.

Nine of top ten sites on which we observed respawning belong to Chinese companies

(one from Hong Kong) whereas the other site belongs to the top Russian search engine

Yandex.

The Flash cookie that respawned the most cookies (69 cookies on 24 websites)

was bbcookie.sol from the bbcdn-bbnaut.ibillboard.com domain which belongs to

a company that was found to use Flash based fingerprinting [30]. Note that this

Flash cookie respawned almost three HTTP cookies per site which belong to dif-

ferent third party domains (bbelements.com, .ibillboard.com and the first-party

domain). Table 4.4 summarizes the most frequently respawned Flash cookies at the

time of measurement.

77

sina.com.cn
simg.sinajs.cn
yandex.ru
kiks.yandex.ru
weibo.com
simg.sinajs.cn
hao123.com
ar.hao123.com
sohu.com
tv.sohu.com
ifeng.com
y3.ifengimg.com
youku.com
irs01.net
56.com
irs01.net
letv.com
irs01.net
tudou.com
irs01.net
bbcdn-bbnaut.ibillboard.com
bbelements.com
.ibillboard.com

Flash domain # respawned cookies
Pass 1 Pass 2

bbcdn-bbnaut.ibillboard.com 63 69
irs01.net 21 18
embed.wistia.com 14 13
source.mmi.bemobile.ua 13 14
kiks.yandex.ru 11 11
static.baifendian.com 10 10
tv.sohu.com 7 7
ar.hao123.com 3 2
embed-ssl.wistia.com 3 3
img5.uloz.to 3 3

Table 4.4: The Flash cookies that respawned the most cookies on the Alexa top
10,000 sites in May 2014. The rightmost two columns represent the number of cookies
respawned in two crawls made with the same set of Flash cookies (Crawl2,3).

4.2.2 HTTP cookies respawning Flash cookies

In May 2014, we ran a sequential crawl of the Top 3,000 Alexa sites using OpenWPM

and saved the accumulated HTTP and Flash cookies. We extracted IDs from this

crawl’s HTTP cookies using the method described in Section 3.2.4. We then made

an additional sequential crawl of the Top 3,000 Alexa sites on a separate machine

loading only the HTTP cookies from the initial crawl.

Our method of detecting HTTP respawning from Flash cookies is as follows: (i)

take the intersection of the initial crawl’s flash objects with the final crawl’s flash

objects (ii) subtract common strings from the intersection using an unrelated crawl’s

flash objects and (iii) search the resulting strings for the first crawl’s extracted HTTP

cookie IDs as described in Section 3.2.4. This enabled us to ensure that the IDs

were indeed found in the Flash objects of both crawls, weren’t common to unrelated

crawls, and existed as IDs on the original machine. Using this method, we detected

11 different unique IDs common between the three storage locations.

These 11 IDs corresponded to 14 first-party domains, a summary of which is

provided by Table A.1 in the Appendix. We primarily observed respawning from

78

JavaScript originating from two third-parties: www.iovation.com, a fraud detection

company that was specialized in device fingerprinting, and www.postaffiliatepro.

com, creators of affiliate tracking software (that runs in the first-party context). We

also observed three instances at the time of measurement of what appeared to be

in-house respawning scripts from three brands: Twitch Interactive (twitch.tv and

justin.tv), casino.com, and xlovecam.com.

4.3 Measuring Cookie Syncing

Cookie synchronization—the practice of third-party domains sharing pseudonymous

user IDs typically stored in cookies—provides the potential for more effective tracking,

especially when coupled with technologies such as cookie respawning (Section 4.2) and

device fingerprinting (Chapter 5). First, pairs of domains who both know the same

IDs via synchronization can use these IDs to share data server-to-server. Second,

cookies that are respawned through fingerprinting or supercookies may contain IDs

that are widely shared due to prior sync events, enabling trackers to link a user’s

browsing history across cookie clears.

4.3.1 Detecting cookie synchronization

Using the ID detection technique outlined in Section 3.2.4, we identified cookies con-

taining values likely to be user IDs. If tracker A wants to share its ID for a user with

tracker B, it can do so in one of two ways: embedding the ID in the request URL

to tracker B, or in the Referer header that will be sent along with the request. We

therefore look for instances of IDs in Referer headers, request URLs, and response

Location headers as described below.

We consider two parties to have cookie synced if a cookie ID appears in specific

locations within the Referer header, request URL, and Location headers extracted

79

www.iovation.com
www.postaffiliatepro.com
www.postaffiliatepro.com
twitch.tv
justin.tv
casino.com
xlovecam.com

from HTTP request and response pairs. To determine the sender and receiver of a

synced ID we use the following classification, in line with previous work [258]:

• If the ID appears in the request URL: the requested domain is the recipient of

a synced ID.

• If the ID appears in the Referer header: the referring domain is the sender of

the ID, and the requested domain is the receiver.

• If the ID appears in the Location header: the original requested domain is the

sender of the ID, and the redirected location domain is the receiver.

This methodology does not require reverse engineering any domain’s cookie sync

API or URL pattern. An important limitation of this generic approach is the lack

of discrimination between intentional cookie syncing and accidental ID sharing. The

latter can occur if a site includes a user’s ID within its URL query string, causing the

ID to be shared with all third parties in the referring URL.

The results of this analysis thus provide an accurate representation of the privacy

implications of ID sharing, as a third party has the technical capability to use an

unintentionally shared ID for any purpose, including tracking the user or sharing

data. However, the results should be interpreted only as an upper bound on cookie

syncing as the practice is defined in the online advertising industry.

4.3.2 Measurement configuration

We used version 0.2.0 of OpenWPM to run multiple stateful crawls of the top 3,000

Alexa domains on Amazon EC23 in 2014. The browsers were configured to load each

site with a timeout of 60 seconds before continuing to the next site. The instances

were configured to use three different Firefox privacy settings: allowing all cookies

3http://aws.amazon.com/ec2/

80

http://aws.amazon.com/ec2/

(i.e. no privacy-protective measures), allowing all cookies but enabling Do Not Track

(DNT), and blocking third-party cookies. We found DNT to have a negligible impact

on tracking and therefore omit it from the discussion of our results.4

4.3.3 Cookie syncing is widespread on the top sites

Table 4.5 shows the prevalence of cookie syncing compared to the overall usage of

ID cookies. This analysis aggregates both third-party and first-party data, as many

domains (e.g. doubleclick.com, facebook.com) exist in both the Alexa Top 3000

and as third-parties on other sites.

Statistic
Third party cookie policy
Allow Block

IDs 1308 938
ID cookies 1482 953
IDs in sync 435 347
ID cookies in sync 596 353
(First*) Parties in sync (407) 730 (321) 450
IDs known per party 1/2.0/1/33 1/1.8/1/36
Parties knowing an ID 2/3.4/2/43 2/2.3/2/22

Table 4.5: Comparison of high-level cookie syncing statistics when allowing and dis-
allowing third-party cookies (top 3,000 Alexa domains) as of a 2014 measurement.
The format of the bottom two rows is minimum/mean/median/maximum. *Here we
define a first-party as a site which was visited in the first-party context at any point
in the crawl.

Table 4.6 shows a summary of the top 10 parties involved in cookie synchronization

at the time of measurement under two cookie policies. Observe that although some

parties were involved in less syncing under the stricter cookie policy, many of the

top parties received the same number of IDs. Overall, disabling third-party cookies

reduced the number of synced IDs and parties involved in syncing by nearly a factor

4With all cookies allowed, the impact of Do Not Track on the aggregate statistics we measure was
negligible. In particular, enabling Do Not Track only reduced the number of domains involved in
synchronization by 2.9% and the number of IDs being synced by 2.6%. This finding was consistent
with studies such as Balebako et al.—they found that, due to lack of industry enforcement, Do Not
Track provided little practical protection against trackers [49].

81

doubleclick.com
facebook.com

All Cookies Allowed No 3P Cookies
Domain # IDs Domain # IDs
gemius.pl 33 gemius.pl 36

doubleclick.net 32 2o7.net 27
2o7.net 27 omtrdc.net 27

rubiconproject.com 25 cbsi.com 26
omtrdc.net 24 parsely.com 16
cbsi.com 24 marinsm.com 14

adnxs.com 22 gravity.com 14
openx.net 19 cxense.com 13

cloudfront.net 18 cloudfront.net 10
rlcdn.com 17 doubleclick.net 10

Table 4.6: Number of IDs known by the Top 10 parties involved in cookie sync at
the time of our 2014 measurement under both the policy of allowing all cookies and
blocking third-party cookies.

All Cookies Allowed No 3P Cookies
ID Creator # Domains ID Creator # Domains

turn.com 43 sociomantic.com 22
adsrvr.org 30 mybuys.com 11

mookie1.com 29 mybuys.com 11
Unknown* 24 mercadolibre.com 9

media6degrees.com 23 shinobi.jp 7
parsely.com 22 newsanalytics.com.au 6
Unknown* 19 microsoft.com 6
titaltv.com 18 mercadolibre.cl 5

crwdcntrl.net 18 mercadolibre.com.ar 5
uservoice.com 15 rackspace.com 5

Table 4.7: Number of domains which had knowledge of unique IDs created by each
listed domain at the time of our 2014 measurements. The ID creator was deter-
mined manually by first placement of cookie (* the relationship was unclear from
HTTP/cookie logs).

82

of two. While this reduction may appear promising from a privacy standpoint, in

Section 4.3.4 we see that even with this much sparser amount of data, database

merges could have enabled domains to reconstruct a large portion of a user’s browsing

history.

Included in Table 4.7 is a summary of the top 10 most shared IDs at the time of

measurement in 2014 under both cookie policies. As an example, consider the most

shared ID when all third party cookies were allowed, which was originally created by

turn.com. This ID was created and placed in a cookie on the first page visit that

included Turn as a third party. On the next page visit, Turn made a GET requests to

25 unique hostnames with a referrer of the form http://cdn.turn.com/server/ddc.

htm?uid=<unique_id>... that contained its ID. These 25 parties gained knowledge

of Turn’s ID, as well as their own tracking cookies, in the process. Similar sharing

occurred as the user continued to browse, eventually leading to 43 total domains.

With third-party cookies disabled, the top shared IDs came from a disjoint set of

parties, largely composed of syncs which share a first party cookie with several third-

party sites.

4.3.4 Back-end database synchronization

We now turn to quantifying how much trackers can learn about users’ browsing histo-

ries by merging databases on the back-end based on synced IDs. Cookie syncing allows

trackers to associate a given user both with their own pseudonymous ID and with IDs

received through syncs, facilitating later back-end merges. We cannot observe these

merges directly, so we do not know if such merges occur with any frequency. That

said, there is a natural incentive in the tracking ecosystem to aggregate data in order

to learn a much larger fraction of a user’s history.

First, if we assume there is no collaboration among third-party trackers, only a

handful of trackers were in position to track a sizeable portion of a user’s browsing

83

turn.com
http://cdn.turn.com/server/ddc.htm?uid=<unique_id>...
http://cdn.turn.com/server/ddc.htm?uid=<unique_id>...

R
a

tio
 o

f
b

ro
w

s
in

g

h
is

to
ry

 k
n

o
w

n

With third-party cookies Without third-party cookies

Figure 4.7: Proportions of user history known when allowing and blocking third-party
cookies under the two different merging schemes at the time of our 2014 measurement.
Note that since the x-axis is sorted by the proportion of a user’s history that a domain
could have recovered, and thus the domains may appear in different orders for the
different models.

history. Only two of the 730 trackers using ID cookies could have recovered more

than 40% of a user’s history and only 11 could have recovered more than 10%. When

third-party cookies were disabled, the respective counts were two and six. These

results are consistent with earlier findings [280].

We consider the following model of back-end database merges: a domain can merge

its records with a single other domain that mutually knows some ID. We assume that

when two domains merge their records for a particular user, they will share their

full records. Our model assumes some collaboration within the tracking ecosystem—

among domains already known to share IDs—but is much weaker than assuming full

cooperation.

Figure 4.7 shows the proportion of a user’s 3000-site browsing history a tracker

could have recovered, both with and without third-party cookies. When third-party

cookies were blocked there were only roughly 60% as many parties. Observe that

after introducing the ability for a tracker to merge records directly with one other

tracker, the known proportion of a user’s history that each tracker has access to

grew significantly. When third-party cookies were allowed, 101 trackers could have

reconstructed over 50% of a user’s history and 161 could have recovered over 40%.

Even when third-party cookies were blocked, 44 domains could have recover over 40%.

84

While we couldn’t determine how prevalent back-end database merges were, they

are incentivized by the industry. Merging histories will increase each tracker’s respec-

tive coverage of users’ browsing histories. Alternatively, a large tracker may act as a

data broker and sell user browsing histories for a fee.

4.3.5 Cookie syncing amplifies bad actors

At a given point in time, cookie synchronization provides a mechanism for trackers

to link a user’s history together. Represented as a graph, sites in an individual’s

history can be represented as nodes with edges between sites if a user tagged with

some pseudonymous ID visited both sites. When a user clears his cookies and restarts

browsing, the third parties will place and sync a new set of IDs and eventually recon-

struct a new history graph.

Since these history graphs correspond to browsing periods with completely differ-

ent tracking IDs, they will be disjoint—in other words, trackers can not associate the

individual’s history before and after they clear cookies. However, if one of the trackers

respawns a particular cookie, parts of the two history graphs can be connected by

an edge, thereby linking an individual’s history over time. This inference becomes

stronger if this respawned ID is synced to a party present on a large number of the

sites that a user visits.

To test this possibility, we ran a second measurement in 2014 in which we set up

two 3,000-site crawls on Amazon EC2, crawl A and crawl B. We cleared the cookies,

Flash storage, cache, and local storage from machine B and loaded the Flash files

from A to seed respawning from Flash. Finally, we ran another 3,000 site crawl on

site B.

We discovered a total of 26 domains that respawned IDs during the measurement

between the two crawls on machine B either through Flash or through other means5.

5The exact method here is not important, as we are concerned with the fact that an ID which
has been respawned is later involved in sync.

85

Three of these IDs were later observed in sync flows. After conducting manual anal-

ysis, we were unable to determine the exact mechanism through which 18 of these

IDs were respawned since we cleared all the storage vectors previously discussed, nor

did we detect device fingerprinting. We conjecture that these IDs were respawned

through some form of passive, server-side fingerprinting6.

One of these IDs provides a useful case study. After respawning this ID, its owner,

merchenta.com, passed it to adnxs.com through an HTTP redirect sync call. Now,

merchenta.com by itself was not in a position to observe a large fraction of a user’s

history—it only appearred on a single first party domain in our crawl (casino.com).

In fact, the largest percentage of a user’s history observable by a cookie-respawning

domain acting alone was 1.4%. However, by passing its ID to adnxs.com, merchenta.

com enabled a much larger proportion of a user’s history to be linked across state

clears, if the two companies were to have shared information on the back end.

In particular, we observed adnxs.com on approximately 11% of first party sites

across the two crawls. Thus adnxs.com had the ability to merge its records for a

particular user before and after an attempt to clear cookies, although of course we

have no insight into whether or not they actually did. This scenario enabled at least

11% of a user’s history to be tracked over time.

4.3.6 Opt-out doesn’t help

In order to study the effect of ad-industry opt-out tools on cookie syncing, we opted-

out from all the listed companies on the Network Advertising Initiative (NAI)7 and

European Interactive Digital Advertising Alliance (EDAA)8 opt-out pages.

6Note that marketing material from one of these respawning domains, merchenta.com men-
tioned tracking by fingerprinting: “Merchenta’s unique fingerprint tracking enables consumers to be
engaged playfully, over an extended period of time, long after solely cookie-based tracking loses its
effectiveness”, http://www.merchenta.com/wp-content/files/Merchenta%20Case%20Study%20-
%20Virgin.pdf.

7http://www.networkadvertising.org/choices/
8http://www.youronlinechoices.com/uk/your-ad-choices

86

merchenta.com
adnxs.com
merchenta.com
casino.com
adnxs.com
merchenta.com
merchenta.com
adnxs.com
adnxs.com
merchenta.com
http://www.merchenta.com/wp-content/files/Merchenta%20Case%20Study%20-%20Virgin.pdf
http://www.merchenta.com/wp-content/files/Merchenta%20Case%20Study%20-%20Virgin.pdf
http://www.networkadvertising.org/choices/
http://www.youronlinechoices.com/uk/your-ad-choices

The use of opt-out cookies reduced the number of IDs involved in cookie synchro-

nization by 30%. However, we saw only a 5% reduction in the number of parties

involved in synchronization. This reduction was comparatively smaller than the re-

duction we saw when the browser was set to block third-party cookies. The compo-

sition of the top parties involved in synchronization was nearly the same as in the

first-party cookie only case seen in Table 4.6. In Section 4.3.4 we show how, even

under the larger reduction in sync activity afforded by blocking all third-party cook-

ies, it was possible to recover a large portion of a user’s browsing history using just a

small number of the parties involved.

Note that most companies offering or honoring the opt-outs we evaluated did not

promise to stop tracking when a user opts out, but only stop displaying behavioral

advertising. While we observed tiny or nonexistent reductions in various forms of

tracking due to opt-out, we make no claims about how opt-outs affect behavioral

advertising.

4.3.7 Nearly all of the top third parties cookie sync

In 2016 we re-ran some of our analyses on a measurement of the top 100,000 sites

to provide an updated and expanded analysis of cookie syncing.9 In this updated

view, the most prolific cookie-syncing third party was doubleclick.net—it shared

108 different IDs with 118 other third parties (this includes both events as a sender

and receiver).

More interestingly, we found that the vast majority of the top third parties synced

cookies with at least one other party: 45 of the top 50, 85 of the top 100, 157 of the

top 200, and 460 of the top 1,000. This adds further evidence that cookie syncing is

an under-researched privacy concern.

9For measurement details see the description in Section 4.1.1 and the “Default Stateful” config-
uration in Table 4.1.

87

We also found that third parties were highly connected by synced cookies. Specif-

ically, of the top 50 third parties that were involved in cookie syncing, the probability

that a random pair would have had at least one cookie in common is 85%. The

corresponding probability for the top 100 was 66%.

Implications of “promiscuous cookies” for surveillance. From the Snowden

leaks, we learnt that that NSA “piggybacks” on advertising cookies for surveillance

and exploitation of targets (Section 2.2). How effective can this technique be? We

explore the question in depth in Chapter 7, but for now consider a threat model where

a surveillance agency has identified a target by a third-party cookie (for example, via

leakage of identifiers by first parties, as described in Section 7.3.5). The adversary

uses this identifier to coerce or compromise a third party into enabling surveillance

or targeted exploitation.

We found that some cookies get synced over and over again to dozens of third par-

ties; we call these promiscuous cookies. It is not yet clear to us why these cookies are

synced repeatedly and shared widely. This means that if the adversary has identified

a user by such a cookie, their ability to surveil or target malware to that user will be

especially good. The most promiscuous cookie that we found belonged to the domain

adverticum.net; it was synced or leaked to 82 other parties which were collectively

present on 752 of the top 1,000 websites at the time of measurement! In fact, each of

the top 10 most promiscuous cookies was shared with enough third parties to cover

60% or more of the top 1,000 sites.

4.4 Summary

In this chapter we showed that stateful web tracking is ubiquitous. We examined the

long tail of online trackers, finding that tracking is concentrated in a few large orga-

nizations (Section 4.1.3). We showed that cookie syncing can change that by allowing

88

trackers to merge their databases, which dramatically increases the percentage of a

user’s browsing history each individual tracker can observe (Section 4.3.4). We also

show that some trackers attempt to work around user controls by respawning cookies

(Section 4.2) and examine how cookie syncing amplifies that practice (Section 4.3.5).

These findings represent a snapshot of tracking on the top sites in January 2016, but

the web is likely to have changed since then. Past research [182, 198] has shown a

steady increase in the amount and variety of tracking over the past decade. Future

research will be necessary to determine the effects of new regulations [92] and browser

improvements [339].

Despite ubiquitous tracking, users do have options to protect themselves. Indus-

try opt-outs and DNT are largely ineffective (Section 4.3.6), but tracking protection

extensions block a majority of stateful trackers (Section 4.1.6). Users also have the

option of clearing their browser’s storage or blocking third-party cookies. This isn’t

the case for the tracking techniques we examine in the next two chapters. In Chap-

ter 5 we show how third parties use device fingerprinting to track users, which is much

harder to control. Fingerprinting offers no equivalent control to stateful tracking—

users can’t easily change their device’s fingerprint. In Chapter 6 we examine an even

more persistent tracking practice: the use of a user’s PII as a tracking identifier.

89

Chapter 5

Persistent tracking with device

fingerprinting

OpenWPM significantly reduces the engineering requirement of measuring device fin-

gerprinting, making it easy to update old measurements and discover new techniques.

In this Chapter, we demonstrate this by measuring several new fingerprinting tech-

niques, three of which have never been measured at scale before. We show how the

number of sites on which font fingerprinting is used and the number of third parties

using canvas fingerprinting have both increased considerably in the past few years.

We also show how WebRTC’s ability to discover local IPs without user permission or

interaction is used almost exclusively to track users. We analyze a new fingerprint-

ing technique utilizing AudioContext found during our investigations. Finally, we

perform a case study of the Battery API, which we find in use by a number of finger-

printing scripts. We examine the standardization process that led to the introduction

of the API, the discovery of privacy vulnerabilities, and the ultimate removal of the

API from several browser engines.

Overall, our results show cause for concern, but also encouraging signs. In partic-

ular, several of our results suggest that while online tracking presents few barriers to

90

entry, trackers in the tail of the distribution are found on very few sites and are far

less likely to be encountered by the average user. Those at the head of the distribu-

tion, on the other hand, are owned by relatively few companies and are responsive to

the scrutiny resulting from privacy studies. We find that the public pressure brought

on by measurement work can be effective in reducing the deployment of device fin-

gerprinting by these large trackers. The standardization process is also headed in

a promising direction: privacy reviews are more common and browser vendors have

shown a willingness to remove APIs following the discovery of abuse.

5.1 Fingerprinting: a 1-Million site view

Our measurements provide an updated and comprehensive view of fingerprinting on

the top websites. We find several high-level trends: fingerprinting scripts are more

common on popular sites, more trackers are fingerprinting users, and fingerprinting

scripts have increased in sophistication. We measured canvas fingerprinting in 2014

and 2016 (Section 5.1.2); canvas fingerprinting was quickly adopted by trackers, and

its use increased during the measurement period. The relatively quick adoption of

an API for fingerprinting is not unique to canvas—we show that trackers are early

adopters of many of the recent HTML5 APIs, in one case comprising 88% of the

use measured in the wild (Section 5.1.4). Theoretical attacks [21,232,256] have been

quickly implemented by trackers and deployed in the wild (Section 5.1.2, Section 5.1.4,

and Section 5.1.6). We also discover trackers developing new techniques; we found two

independent implementations of Audio API fingerprinting, despite a lack of previously

discovered attacks (Section 5.1.5). Finally, we find that tracking protection tools

catch popular scripts and techniques, but frequently miss scripts in the long tail

(Section 5.1.7).

91

% of First-parties
Rank Interval Canvas Canvas Font WebRTC

[0, 1K) 5.10% 2.50% 0.60%
[1K, 10K) 3.91% 1.98% 0.42%
[10K, 100K) 2.45% 0.86% 0.19%
[100K, 1M) 1.31% 0.25% 0.06%

Table 5.1: Prevalence of fingerprinting scripts on different slices of the top sites in
January 2016. More popular sites are more likely to have fingerprinting scripts.

5.1.1 Measurement configuration

To detect fingerprinting, we analyze the Javascript calls made during the January 2016

measurements described in Section 4.1.1, specifically the “Default Stateless” 1-million-

site measurement listed in Table 4.1.1 Our fingerprinting detection methodology

utilizes data collected by the Javascript instrumentation described in Section 3.1.2.

With this instrumentation, we monitor access to all built-in interfaces and objects we

suspect may be used for fingerprinting. By monitoring on the interface or object level,

we are able to record access to all method calls and property accesses for each interface

we thought might be useful for fingerprinting. This allows us to build a detection

criterion for each fingerprinting technique after a detailed analysis of example scripts.

Although our detection criteria currently have negligible low false positive rate,

we recognize that this may change as new web technologies and applications emerge.

However, instrumenting all properties and methods of an API provides a complete

picture of each application’s use of the interface, allowing our criteria to also be

updated. More importantly, this allows us to replace our detection criteria with

machine learning, which is an area of future work (Chapter 8).

1We measured canvas fingerprinting twice, once in 2014 and once in 2016. The 2014 measurement
used was performed using modCrawler (part of the FPDetective project [30]), and consisted of a
crawl of the top 100,000 Alexa sites.

92

5.1.2 Canvas Fingerprinting

Privacy threat. The HTML Canvas allows web applications to draw graphics in real

time, with functions to support drawing shapes, arcs, and text to a custom canvas

element. In 2012 Mowery and Schacham demonstrated how the HTML Canvas could

be used to fingerprint devices [232]. Differences in font rendering, smoothing, anti-

aliasing, as well as other device features cause devices to draw the image differently.

This allows the resulting pixels to be used as part of a device fingerprint.

The same text can be rendered in different ways on different computers depending

on the operating system, font library, graphics card, graphics driver and the browser.

This may be due to the differences in font rasterization such as anti-aliasing, hint-

ing or sub-pixel smoothing, differences in system fonts, API implementations or even

the physical display [232]. In order to maximize the diversity of outcomes, the ad-

versary may draw as many different letters as possible to the canvas. Mowery and

Shacham, for instance, used the pangram How quickly daft jumping zebras vex in

their experiments.

Figure 5.1 shows the basic flow of operations to fingerprint canvas. When a user

visits a page, the fingerprinting script first draws text with the font and size of its

choice and adds background colors (1). Next, the script calls Canvas API’s ToDataURL

method to get the canvas pixel data in dataURL format (2), which is a Base64 encoded

representation of the binary pixel data. Finally, the script takes the hash of the text-

encoded pixel data (3), which serves as the fingerprint and may be combined with

other high-entropy browser properties such as the list of plugins, the list of fonts, or

the user agent string [110].

Detection methodology. We performed two measurements, one in 2014 and

one in 2016. In the time between the two measurements, the Canvas API received

broader adoption for non-fingerprinting purposes, which necessitated several changes

to the detection methodology to reduce false positives. In our 2016 measurements

93

FillText()

w0KGgoAAAANSUhEUgAAA
SwAAACWCAYAAABkW7XS
AAAeq0leXgV1d0...

ToDataURL()

Hash()

(1) (2)

(3)

FillStyle()
FillRect()

. . .

Figure 5.1: Sample canvas fingerprinting implementation

we record access to nearly all of properties and methods of the HTMLCanvasElement

interface and of the CanvasRenderingContext2D interface. We present the filtering

criteria for that measurement, and note the differences from the 2014 measurement

where necessary:

1. The canvas element’s height and width properties must not be set below 16

px.2

2. Text must be written to canvas with least two colors or at least 10 distinct

characters.3

3. The script should not call the save, restore, or addEventListener methods

of the rendering context.4

4. The script extracts an image with toDataURL or with a single call to

getImageData that specifies an area with a minimum size of 16px × 16px.5

This heuristic is designed to filter out scripts which are unlikely to have sufficient

complexity or size to act as an identifier. We manually verified the accuracy of our

2The default canvas size is 300px × 150px.
3A minimum color or character requirement for the written text was not applied during the 2014

measurement.
4Filtering on the save, restore, or addEventListener methods calls was not applied during the

2014 measurement
5The 2014 measurement did not consider scripts which called getImageData

94

Domain # First-parties

doubleverify.com 7806
lijit.com 2858
alicdn.com 904
audienceinsights.net 499
boo-box.com 303
407 others 2719
TOTAL 15089 (14371 unique)

Table 5.2: Canvas fingerprinting on the Alexa Top 1 Million sites in January 2016.
For a more complete list of scripts, see Table A.3 in the Appendix.

detection methodology by inspecting the images drawn and the source code. We

found a mere 4 false positives out of 3493 scripts identified in our January 2016

1-million-site measurement. Each of the 4 is only present on a single first-party.

Results. In 2014 we found canvas fingerprinting on 5,542 (5.5%) of the top

100,000 sites. The overwhelming majority of these instances (95%) were from a single

provider (addthis.com), but we also found an additional 19 domains performing

canvas fingerprinting. A list of the most popular scripts at the time is provided in

Appendix Table A.2. In 2016 we discovered canvas fingerprinting on 14,371 (1.6%)

of the top 1 million sites. The vast majority (98.2%) were from third-party scripts.

These scripts were loaded from about 3,500 URLs hosted on about 400 domains.

Table 5.2 shows the top 5 domains which served canvas fingerprinting scripts ordered

by the number of first-parties they were present on.

Comparing the two measurements we find three important trends. First, the most

prominent trackers have by-and-large stopped using it, suggesting the the public

backlash [41, 186] that followed the initial study was effective. Second, the overall

number of domains employing it has increased considerably, indicating that knowledge

of the technique has spread and that more obscure trackers may be less concerned

about public perception. As the technique evolves, the images used have increased in

variety and complexity, as we detail in Figure 5.2. Third, we observe an apparent shift

95

doubleverify.com
lijit.com
alicdn.com
audienceinsights.net
boo-box.com
addthis.com

Figure 5.2: Example canvas renderings used in fingerprinting scripts found during
our 2014 and 2016 measurements.

in usage from behavioral tracking to fraud detection, in line with the ad industry’s

self-regulatory norm regarding acceptable uses of fingerprinting.

5.1.3 Canvas Font Fingerprinting

Privacy threat. The browser’s font list is very useful for device fingerprinting [7].

The ability to recover the list of fonts through Javascript or Flash is known, and

existing tools aim to protect the user against scripts that do that [30, 246]. But can

fonts be enumerated using the Canvas interface? The only public discussion of the

technique prior to our analysis seems to be a Tor Browser ticket from 20146. To the

best of our knowledge, we are the first to measure its usage in the wild.

Detection methodology. The CanvasRenderingContext2D interface provides

a measureText method, which returns several metrics pertaining to the text size

(including its width) when rendered with the current font settings of the rendering

context. Our criterion for detecting canvas font fingerprinting is: the script sets the

font property to at least 50 distinct, valid values and also calls the measureText

method at least 50 times on the same text string. We manually examined the source

code of each script found this way and verified that there are zero false positives on

our 1 million site measurement.

6https://trac.torproject.org/projects/tor/ticket/13400

96

https://trac.torproject.org/projects/tor/ticket/13400

Fingerprinting script # of sites Text drawn into the canvas

mathid.mathtag.com/device/id.js

mathid.mathtag.com/d/i.js 2941 mmmmmmmmmmlli
admicro1.vcmedia.vn/core/fipmin.js 243 abcdefghijklmnopqr[snip]
*.online-metrix.net1 75 gMcdefghijklmnopqrstuvwxyz0123456789
pixel.infernotions.com/pixel/ 2 mmmmmmmmmMMMMMMMMM=llllIiiiiii‘’.
api.twisto.cz/v2/proxy/test* 1 mmmmmmmmmmlli
go.lynxbroker.de/eat_session.js 1 mimimimimimimi[snip]
TOTAL 32632 -

Table 5.3: Canvas font fingerprinting scripts on the top Alexa 1 Million sites in
January 2016.
*: Some URLs are truncated for brevity.
1: The majority of these inclusions were as subdomain of the first-party site, where
the DNS record points to a subdomain of online-metrix.net.
2: We found canvas font fingerprinting on 3250 unique sites. Some sites include
fingerprinting scripts from more than one domain.

Results. We found canvas-based font fingerprinting present on 3,250 first-party

sites. This represents less than 1% of sites, but as Table 5.1 shows, the technique was

more heavily used on the top sites, reaching 2.5% of the top 1000. The vast majority

of cases (90%) were served by a single third party, mathtag.com. The number of

sites with font fingerprinting represents a seven-fold increase over a 2013 study [30],

although they did not consider Canvas. See Table 5.3 for a full list of scripts.

5.1.4 WebRTC-based fingerprinting

Privacy threat. WebRTC is a framework for peer-to-peer Real Time Communi-

cation in the browser, and accessible via Javascript. To discover the best network

path between peers, each peer collects all available candidate addresses, including

addresses from the local network interfaces (such as ethernet or WiFi) and addresses

from the public side of the NAT and makes them available to the web application

without explicit permission from the user. This has led to serious privacy concerns:

users behind a proxy or VPN can have their ISP’s public IP address exposed [314].

We focus on a slightly different privacy concern: users behind a NAT can have their

local IP address revealed, which can be used as an identifier for tracking.

97

mathid.mathtag.com/device/id.js
mathid.mathtag.com/d/i.js
admicro1.vcmedia.vn/core/fipmin.js
*.online-metrix.net
pixel.infernotions.com/pixel/
api.twisto.cz/v2/proxy/test*
go.lynxbroker.de/eat_session.js
online-metrix.net
mathtag.com

A Javascript web application to access ICE candidates, and thus access a user’s lo-

cal IP addresses and public IP address, without explicit user permission. Although a

web application must request explicit user permission to access audio or video through

WebRTC, the framework allows a web application to construct an RTCDataChannel

without permission. By default, the data channel will launch the ICE protocol and

thus enable the web application to access the IP address information without any ex-

plicit user permission.7 Both users behind a NAT and users behind a VPN/proxy can

have additional identifying information exposed to websites without their knowledge

or consent.

Detection methodology. To detect WebRTC local IP discovery, we instrument

the RTCPeerConnection interface prototype and record access to its method calls

and property access. After the measurement is complete, we select the scripts which

call the createDataChannel and createOffer APIs, and access the event handler

onicecandidate8. We manually verified that scripts that call these functions are in

fact retrieving candidate IP addresses, with zero false positives on 1 million sites.

Next, we manually tested if such scripts are using these IPs for tracking. Specifically,

we check if the code is located in a script that contains other known fingerprinting

techniques, in which case we label it tracking. Otherwise, if we manually assess that

the code has a clear non-tracking use, we label it non-tracking. If neither of these is

7Several steps must be taken to have the browser generate ICE candidates. First, a
RTCDataChannel must be created. Next, the RTCPeerConnection.createOffer() must be
called, which generates a Promise that will contain the session description once the of-
fer has been created. This is passed to RTCPeerConnection.setLocalDescription(), which
triggers the gathering of candidate addresses. The prepared offer will contain the sup-
ported configurations for the session, part of which includes the IP addresses gathered by
the ICE Agent. A web application can retrieve these candidate IP addresses by using the
event handler RTCPeerConnection.onicecandidate() and retrieving the candidate IP address
from the RTCPeerConnectionIceEvent.candidate or, by parsing the resulting Session Descrip-
tion Protocol (SDP) [281] string from RTCPeerConnection.localDescription after the of-
fer generation is complete. In our measurement we only found it necessary to instrument
RTCPeerConnection.onicecandidate() to capture all current scripts.

8Although we found it unnecessary for current scripts, instrumenting localDescription will
cover all possible IP address retrievals.

98

Classification # Scripts # First-parties
Tracking 57 625 (88.7%)
Non-Tracking 10 40 (5.7%)
Unknown 32 40 (5.7%)

Table 5.4: Summary of WebRTC local IP discovery on the top 1 million Alexa
sites in January 2016.

the case, we label the script as ‘unknown’. We emphasize that even the non-tracking

scripts present a privacy concern related to leakage of private IPs.

Results. We found WebRTC being used to discover local IP addresses without

user interaction on 715 sites out of the top 1 million. The vast majority of these

(659) were done by third-party scripts, loaded from 99 different locations. A large

majority (625) were used for tracking. We provide a summary in Table 5.4. The

top 10 scripts accounted for 83% of usage, in line with our other observations about

the small number of third parties responsible for most tracking. We provide a list of

scripts in Table A.4 in the Appendix.

The number of confirmed non-tracking uses of unsolicited IP candidate discovery

was small, and based on our analysis, none of them were critical to the application.

These results have implications for the ongoing debate on whether or not unsolicited

WebRTC IP discovery should be private by default [74, 313,314].

5.1.5 AudioContext Fingerprinting

The scale of our data gives us a new way to systematically identify new types of

fingerprinting not previously reported in the literature. The key insight is that fin-

gerprinting techniques typically aren’t used in isolation but rather in conjunction with

each other. So we monitor known tracking scripts and look for unusual behavior (e.g.,

use of new APIs) in a semi-automated fashion. Using this approach we found several

fingerprinting scripts utilizing AudioContext and related interfaces.

99

Oscillator GainAnalyser Destination

FFT

[-121.36, -121.19, ...]SHA1() eb8a30ad7...

=0

Oscillator
Dynamics

Compressor Destination

Triangle Wave

Sine Wave

Buffer

MD5() ad60be2e8...[33.234, 34.568, ...]

Figure 5.3: AudioContext node configuration used to generate a fingerprint as found
in our January and March 2016 measurements. Top: Used by www.cdn-net.com/

cc.js in an AudioContext. Bottom: Used by client.a.pxi.pub/*/main.min.js

and js.ad-score.com/score.min.js in an OfflineAudioContext.

In the simplest case, a script from the company Liverail9 checked for the exis-

tence of an AudioContext and OscillatorNode to add a single bit of information

to a broader fingerprint. More sophisticated scripts processed an audio signal gener-

ated with an OscillatorNode to fingerprint the device. This is conceptually similar

to canvas fingerprinting: audio signals processed on different machines or browsers

may have slight differences due to differences between the machines, while the same

combination of machine and browser will produce the same output.

Figure 5.3 summarizes the two audio fingerprinting configurations we found in

the wild. The top configuration was used by *.cdn-net.com/cc.js. First, the script

creates an AudioContext and generates a triangle wave using an OscillatorNode.

This signal is passed through an AnalyserNode and a ScriptProcessorNode. Fi-

nally, the signal is passed into a through a GainNode with gain set to zero to mute

any output before being connect to the AudioContext’s destination (i.e., the com-

9https://www.liverail.com/

100

www.cdn-net.com/cc.js
www.cdn-net.com/cc.js
client.a.pxi.pub/*/main.min.js
js.ad-score.com/score.min.js
*.cdn-net.com/cc.js
https://www.liverail.com/

700

 -80

-100
-120

-140

dB

Frequency Bin Number

-160
-180
-200

-220

Chrome Linux 47.0.2526.106
Firefox Linux 41.0.2
Firefox Linux 44.0b2

750 800 850 900 950 1000

Figure 5.4: Visualization of processed OscillatorNode output from fingerprinting
configuration found in https://www.cdn-net.com/cc.js in January 2016 for three
different browsers on the same machine. We found these values to remain constant
for each browser after several checks.

puter’s speakers). The AnalyserNode provides access to a Fast Fourier Transform

(FFT) of the audio signal, which is captured using the onaudioprocess event han-

dler added by the ScriptProcessorNode. The resulting FFT was hashed and used

as a fingerprint. The bottom configuration was used by two scripts, (client.a.pxi.

pub/*/main.min.js and http://js.ad-score.com/score.min.js). These scripts

used an OscillatorNode to generate a sine wave. The output signal is connected

to a DynamicsCompressorNode, possibly to increase differences in processed audio

between machines. The output of this compressor is passed to the buffer of an

OfflineAudioContext. The scripts used a hash of the sum of values from the buffer

as the fingerprint.

Effectiveness of audio fingerprinting We created a fingerprinting test page

based on the scripts, which attracted visitors with 18,500 distinct cookies.10 These

18,500 devices hashed to a total of 713 different fingerprints. We estimate the entropy

of the fingerprint at 5.4 bits based on our sample. We leave a full evaluation of the

effectiveness of the technique to future work.

10The AudioContext fingerprinting test page is available at https://audiofingerprint.

openwpm.com.

101

https://www.cdn-net.com/cc.js
client.a.pxi.pub/*/main.min.js
client.a.pxi.pub/*/main.min.js
http://js.ad-score.com/score.min.js
https://audiofingerprint.openwpm.com
https://audiofingerprint.openwpm.com

We found that this technique is very infrequently used as of March 2016. The most

popular script was from Liverail, present on 512 sites. Other scripts were present on

as few as 6 sites. This shows that even with very low usage rates, we can successfully

bootstrap off of currently known fingerprinting scripts to discover and measure new

techniques.

5.1.6 Battery Status API Fingerprinting

As a second example of bootstrapping, we analyze the Battery Status API, which

allows a site to query the browser for the current battery level or charging status of

a host device. Olejnik et al. provide evidence that the Battery API can be used for

tracking [256]. The authors show how the battery charge level and discharge time

have a sufficient number of states and lifespan to be used as a short-term identifier.

These status readouts can help identify users who take action to protect their privacy

while already on a site. For example, the readout may remain constant when a user

clears cookies, switches to private browsing mode, or opens a new browser before re-

visiting the site. More detail on this attack is given in Section 5.2.1. We discovered

two fingerprinting scripts utilizing the API during our manual analysis of our January

2016 measurement data for other fingerprinting techniques.

One script, https://go.lynxbroker.de/eat_heartbeat.js, retrieved the cur-

rent charge level of the host device and combined it with several other identifying

features. These features included the canvas fingerprint and the user’s local IP ad-

dress retrieved with WebRTC as described in Section 5.1.2 and Section 5.1.4. The

second script, http://js.ad-score.com/score.min.js, queried all properties of the

BatteryManager interface, retrieving the current charging status, the charge level,

and the time remaining to discharge or recharge. As with the previous script, these

features were combined with other identifying features used to fingerprint a device.

102

https://go.lynxbroker.de/eat_heartbeat.js
http://js.ad-score.com/score.min.js

In Section 5.2.2 we describe the findings of a larger, automated measurement of the

use of Battery Status API in the wild.

As a result of our research and related findings of misuse, the Battery Status API

was eventually removed from several major browsers [87]. We examine the events

that led up to the removal and perform a retrospective analysis of the decision in

Section 5.2.

5.1.7 The wild west of fingerprinting scripts

In Section 4.1.6 we found the various tracking protection measures to be very effective

at reducing third-party tracking. In Table 5.5 we show how blocking tools miss many

of the scripts we detected throughout Section 5.1, particularly those using lesser-

known techniques. Although blocking tools detect the majority of instances of well-

known techniques, only a fraction of the total number of scripts are detected.

Disconnect EL + EP

Technique % Scripts % Sites % Scripts % Sites

Canvas 17.6% 78.5% 25.1% 88.3%

Canvas Font 10.3% 97.6% 10.3% 90.6%

WebRTC 1.9% 21.3% 4.8% 5.6%

Audio 11.1% 53.1% 5.6% 1.6%

Table 5.5: Percentage of fingerprinting scripts blocked by Disconnect or the combi-
nation of EasyList and EasyPrivacy for all techniques described in Section 5.1 as of
January 2016. Included is the percentage of sites with fingerprinting scripts on which
scripts are blocked.

Fingerprinting scripts pose a unique challenge for manually curated block lists.

They may not change the rendering of a page or be included by an advertising entity.

The script content may be obfuscated to the point where manual inspection is difficult

and the purpose of the script unclear.

OpenWPM’s Javascript call monitoring (see Section 3.1.2) detects a large number

of scripts not blocked by privacy tools at the time of measurement. The Disconnect

103

10−6 10−5 10−4 10−3 10−2

Prominence of Script (log)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
ti
on
of
S
cr
ip
ts
B
lo
ck
ed

Figure 5.5: Fraction of fingerprinting scripts with prominence above a given level
blocked by Disconnect, EasyList, or EasyPrivacy on the top 1M sites in January
2016.

list and a combination of EasyList and EasyPrivacy both performed similarly in their

block rate. The privacy tools blocked canvas fingerprinting on over 78% of sites,

and blocked canvas font fingerprinting on over 90%. However, only a fraction of the

total number of scripts utilizing the techniques were blocked (between 10% and 25%)

showing that less popular third parties were missed. Lesser-known techniques, like

WebRTC IP discovery and Audio fingerprinting had even lower rates of detection.

In fact, fingerprinting scripts with a low prominence were blocked much less fre-

quently than those with high prominence. Figure 5.5 shows the fraction of scripts

which were blocked by Disconnect, EasyList, or Easyprivacy for all techniques an-

alyzed in this section. 90% of scripts with a prominence above 0.01 were detected

and blocked by one of the blocking lists, while only 35% of those with a prominence

above 0.0001 were. The long tail of fingerprinting scripts were largely unblocked by

the privacy tools.

5.2 Case study: the Battery Status API

The Battery Status API offers an interesting and unusual case study of privacy as-

sessment in the web standardization process. The specification started with a typical

progression: it went through a few iterations as a draft, was quickly implemented

104

by multiple browser vendors, and then progressed to a candidate recommendation

— one which characterized the privacy impact as “minimal”. Several years later,

after it was implemented in all major browser engines and was nearing finalization,

several privacy vulnerabilities were discovered [260] and actively exploited in the wild

(Section 5.1.6). In an unprecedented move, two of the three major browser engines

removed support for the API and another browser moved to an opt-in model.

In this section we analyze the privacy engineering aspects [147] of the Battery

Status API, with a focus on the standardization and implementation process. Specif-

ically, we perform a systematic review of the deployment of the Battery Status API

(Section 5.2.1), we present the first large-scale measurement of Battery Status API

use on the web (Section 5.2.2), and we extract useful privacy engineering practices

and provide recommendations to improve the design process (Section 5.2.3).

5.2.1 The timeline of specification and adoption

Figure 5.6 summarizes the major developments during the design and implementation

of the Battery Status API, from the initial specification to the eventual removal from

several browsers. We discuss each in detail below.

2013 2014 2015 2016 201720122011

W3C Battery
Status Event WD

W3C Battery
Status API WD

Firefox adds
support

WebKit adds
support

W3C Candidate
Recommendation

Chrome adds
support

Firefox rounding
bug reported

Leaking Battery
report published

Firefox 38 rounding
bug fixed

Chrome rounding
patch commit

W3C
Prop.Rec.

API misuse
in the wild

Uber
study

Blink bug moved to
permissions component

Yandex announces
opt-in model

Firefox 52 limits
API to internal use

Firefox and WebKit
remove support

Figure 5.6: Timeline of events.

105

API specification

The Battery Status API is a browser mechanism that provides access to the power

management information of a device [175]. An example use case listed in the W3C

specification is responding to low battery levels. For instance, an online word pro-

cessor might auto-save more frequently when the battery is low. The API provides

the following information: the battery charge level (e.g. 0.43 when the battery has

43% remaining power), the charging status (whether or not the device is charging),

the time in seconds to a full discharge (dischargingTime; when discharging) or a full

charge (chargingTime; when charging).

In April 2011, the Battery Status Event Working Draft first described how a web-

site can access battery information [171]. The specification was reworked into the

Battery Status API in November 2011 [172] and progressed to a Candidate Recom-

mendation in May 2012 [176]. This version identified a “minimal impact on privacy

or fingerprinting”, but suggested “the user agent can obfuscate the exposed value

in a way that [websites] cannot directly know if a hosting device has no battery, is

charging or is exposing fake values.” [173]. This shows that although the specification

authors felt the privacy impact was minimal, they felt there was enough of a risk that

user agents (browsers) may want to hide a user’s true battery status.

Adoption by browser vendors

The first implementations of the Battery Status API were in 2012 by Firefox [234]

(mobile and desktop) and WebKit [333]. Chrome11 also started an implementation

in 2012 that was never completed, citing a general lack of interest and convincing

use cases [19]. Chrome later removed and re-implemented it in 2014 on both mobile

and desktop [19]. Other browsers based on Chrome’s Blink engine supported the

11Chromium and Chrome are both based on the Blink rendering engine and expose the same
Battery Status API. We refer exclusively to Chrome for the remainder of this section but our
analysis is applicable to both browsers.

106

API soon after, such as Opera in 2014 [264]. This level of implementation fulfills

W3C requirements of having at at least two independent implementations prior to

finalization of a specification [11]. For a summary of support by additional browsers,

see Table 5.6.

Discovery of privacy vulnerabilities

In 2015 Olejnik et al. [257] examined the W3C specification and the browser imple-

mentations of the API and found several privacy vulnerabilities. They showed that

the API can be used to track users, both by using the status readouts as short-term

identifiers and by using repeated readouts to reconstruct the battery capacity on

certain platforms.

Battery status readouts made users of certain platforms vulnerable to tracking

across sites by a third-party. The API’s charge level returns a value between 0 and

1 which represents the ratio of the current charge remaining to the maximum capacity.

The researchers found that Firefox on Linux returned a double-precision floating-point

value for charge level, the result of returning the operating system’s value directly

without truncating the result. This means that there are a large number of possible

values for the charge level. Thus, if a tracker were to see the same charge level readout

on two different sites at the same instant (or within a short time window), it gives

the tracker evidence that the page visits were from the same device. This is true even

if the user cleared cookies between the two visits or used different browser contexts

for the two visits, such as regular versus private browsing.

The researchers further pointed out that short-term tracking was possible even

on platforms which didn’t expose the high-precision charge level, although it was less

effective. On platforms other than Firefox on Linux, the battery charge level was just

two significant digits. However, by combining the charge level with dischargeTime

and chargeTime the researchers estimated the possible number of states to be on

107

the order of millions under normal operating conditions. Thus, a tracker could still

conclude that two page visits with the same status readout is likely the same device,

particularly if it coupled that measurement with the device’s IP address.

Finally, the researchers showed that the double-precision readouts for Firefox on

Linux enabled a more sophisticated attack in which a site could recover the battery

capacity. The attack works by reading the device’s current charge level and calculating

which possible battery capacities could result in that charge level based on how the

underlying operating system battery library calculates charge level. As the tracker

makes more readings, it decreases the number of possible battery capacity values that

could result in the observed sequence of charge levels. In the end, a tracker could

recover the actual battery capacity, and use that as a static identifier for the device.

This capacity could also be included alongside other device properties in a broader

device fingerprint.

Initial privacy improvements by browser vendors

In response to the 2015 report [257], Firefox fixed the precision of the battery level

readout to two significant digits for all platforms [252]. Chrome did not return high

precision readouts on Linux because of an implementation difference. However, had

Chrome used a high precision source it would have exhibited the same behavior. To

prevent this, Chrome preemptively capped the precision to no more than 2 digits on

all platforms [325]. The W3C specification was amended [174] with non-normative

privacy recommendations. Notable additions are:

1. data minimization — avoiding the exposition of high precision readings of bat-

tery status information

2. user control — optionally making the API subject to browser permissions that

may require prompting the user prior to the use of the API

108

3. incognito support — disabling the API in private browsing modes

4. transparency — informing the user when the API is and has been in use

This response prevents the battery capacity from being recoverable and lessens

the usefulness of status readouts as a short-term identifiers. However, even with

reduced precision the battery status output will still provide additional identifying

information that can be used to fingerprint and re-identify a device over short time

intervals.

Discovery of misuse on the web

In Section 5.1.6 we discuss our initial discovery of misuse on the web. We found

two scripts, together present on 22 sites, that used battery status as part of a device

fingerprint. In Section 5.2.2 we present an automated analysis of the Alexa top 50,000

to audit the use of the API in late 2016.

One script, served by lynxbroker.de, retrieved only the current charge level of

the device. The other script, served by ad-score.com, queried all properties of the

BatteryManager interface, including the current charging status, the charge level,

and the time remaining to discharge or recharge. Both scripts combine the retrieved

battery information with other identifying properties of the device, such as the canvas

fingerprint or system fonts, to create a device fingerprint.

Discovery of second-order privacy concerns

Until May 2016, the primary privacy concern of the API was its usefulness for online

tracking. In May 2016, Uber disclosed its finding that users with a low battery are

more willing to pay higher prices for a ride (i.e. more likely to book a ride during

surge pricing) [84]. This sparked concerns that Uber or other companies could misuse

battery status information to increase prices for users with a low battery level [82,143].

109

lynxbroker.de
ad-score.com

Browser Engine API Support (2016) Current API Support (2018)
Firefox Gecko Initial support since version 10 [234] Inaccessible to web content [271] [236]
Safari WebKit Not enabled. WebKit support since 2012 [333] WebKit removed [111]

Chrome Blink Supported since version 38 [19] Restrictions under consideration [254]
Edge EdgeHTML Not supported. Considered [226] Not supported. Considered [226]

Yandex Blink Supported Spoofing by default, opt-in [255,343]

Table 5.6: API support in various browsers and privacy strategies employed.

Mozilla cited these second order privacy concerns on W3C mailing lists during their

initial discussions of whether to remove or restrict the API [77]. Materials obtained

in a Subject Access Request confirmed that Uber does collect device battery level for

use in fraud detection [103].

Removal of the API from browsers

As summarized in Table 5.6, support for the Battery Status API has tumbled in

response to privacy concerns. At its peak in 2016, the API was implemented in the

engines supporting Firefox, Chrome, and Safari (though it was disabled in Safari). In

addition, other browsers built on the major engines, such as Opera and the Yandex

Browser, also exposed the API to the web.

In October 2016 Mozilla announced it would remove access to API by web content

in Firefox 52 [235]. The API is now restricted to internal browser code, and may

eventually be exposed to WebExtensions-based browser extensions [271]. In March

2017 Firefox 52 was released with the API removed [236]. Following Mozilla’s decision,

WebKit, the underlying engine behind Safari browser, removed the Battery Status

API from its source tree [111].

As of April 2018, Chrome developers have not provided an official stance on

whether or how they will change the API. The current discussion in the relevant

bug indicates that it may be disabled for non-secure contexts and cross-origin frames,

reduced in precision, or removed entirely [254]. Microsoft Edge continues to have the

API on its feature wishlist [226]; as of April 2018 there is no indication of a change.

110

Other browsers based on these engines could also restrict access to the API if

desired. One such example is the Yandex Browser (built on the Blink engine), which

now spoofs a fully charged status until the user explicitly enables the API using the

appropriate browser setting [255]. Yandex has limited market share, but we include

it in the table to show the versatility of responses by browser vendors.

Browser vendors regularly make privacy-related changes and continually deprecate

unused and insecure features. However, the removal of an entire API in response to

privacy concerns is unprecedented. We verified that this type of feature removal

has not happened before by checking a website which tracks browser changes for

compatibility purposes12.

The future of the API

As of April 2018, it is unclear how the specification and remaining implementations

will progress. Since the API was implemented in both Chrome and Firefox in 2016,

it fulfilled the W3C requirement of two interoperable implementations [11]. Thus,

despite only having one current implementation in 2018 (i.e. Chrome), the specifica-

tion could progress to a W3C Recommendation. If there isn’t sufficient interest by

the authors to continue the specification, it can be published as a W3C Note, which

would signify the end of active development by the W3C. The specification authors

have suggested restricting access to the API to secure, top-level browsing contexts as

an additional step to the privacy risks associated with the API [169].

5.2.2 Use and misuse of the API in the wild

We measured the use of the Battery Status API on the homepages of the Alexa top

50,000 sites in November 201613 using OpenWPM. We found that in total, the API

12www.fxsitecompat.com
13Since Mozilla and WebKit announced their intent to remove the API in October 2016, it is

possible some sites or scripts could have changed their use of it in response to that news. We believe
a 1 month time window is small enough that this is unlikely to have a significant effect on our results.

111

www.fxsitecompat.com

was used by 56 distinct parties on 841 sites. The majority of this usage was by third

parties — 33 third parties on a total of 815 sites.

We manually classified these 33 scripts, to determine how the feature was be-

ing used around the time of its removal. We used the fingerprinting classification

methodology outlined in Section 3.2.6. We classify a script as benign if it uses the

battery status to do things we feel the API designers intended to support, such as

performance and diagnostic measurements.14 We classify a script as tracking if it

uses the API for device identification, whether for fingerprinting, analytics, or fraud

detection.

We found 16 third parties using the API for tracking at the time of measurement,

11 of which used it as part of a device fingerprint. An additional 8 third parties used

the API for benign purposes. For the remaining 9 third parties, we were unable to

classify the usage, either due to script obfuscation or vagueness. Scripts from the

16 trackers were present on 347 sites (or around 48% of sites on which we classi-

fied API use). The benign uses of the API were primarily from two third parties:

YouTube, where the API was used in performance metrics for embedded videos, and

Boomerang15, a performance measurement library.

Representative examples of misuse

As a representative example of misuse, consider the fingerprinting script16 served by

Augur, a provider of device recognition services whose marketing material advertised

“cookie-less tracking”. At the time of our analysis, the script collected a large number

of device properties: the device’s fonts, plugins, WebGL properties, screen informa-

tion, processor information, whether or not the device is blocking ads, whether or not

the device is blocking cookies, and more. From the Battery Status API, the script

14We elaborate on intended versus unintended use in the Representative examples of misuse sec-
tion.

15https://soasta.github.io/boomerang/doc/
16Located at http[s]://cdn.augur.io/augur.min.js

112

https://soasta.github.io/boomerang/doc/
http[s]://cdn.augur.io/augur.min.js

collected the current charge level and combined it with the other device properties.

The script sent a heavily obfuscated payload back to Augur’s server.

We discovered Augur’s use of the Battery Status API for fingerprinting on 16 of

the top 50,000 sites measured. In the November 2016 Princeton Web Census data (see

Section 4.1) we found that 166 sites of the top 1 million embedded the script on their

homepage. Several notable sites at the time were glasses.com, a major retailer of

eyeglasses, libertytax.com, a tax preparation service, and proactiv.com, a major

acne treatment provider.

While this example of misuse is clear cut, others are harder to categorize. A

script by Riskified, a provider of fraud detection services for e-commerce, appeared

to use Battery-related attributes as a part of a user reputation score, but did not

seem to fingerprint the user. Even scripts that collected device fingerprints may not

necessarily use them for tracking and behavioral profiling—another use case is to

augment authentication [38], which would presumably meet fewer objections from

users. In particular, the Battery Status API, due to its time-varying nature, can

be used in continual authentication [300]. Regardless, all such uses appear to be

unintended by the authors of the W3C specification, as they do not pertain to power

management, and an analysis of mailing list discussions supports this interpretation.

A retrospective look at vendor response

Nearly half of the Battery Status API use we classified was for user profiling or

identification—a use case the API designers did not intend to support. When mea-

sured in terms of distinct scripts rather than distinct sites, that fraction rises to

two-thirds. Note that our measurement is conservative; parties which collect battery

status information through performance or feature detection libraries can also use

that information to track users, but we do not make this assumption.

113

glasses.com
libertytax.com
proactiv.com

At the time of Firefox’s and WebKit’s decisions to remove the API, the preliminary

evidence suggested that it was being misused in the majority of cases [87]. Mozilla’s

discussion thread cites two specific uses: the research described in Section 5.2.1 and

the Boomerang performance library [87]. The empirical data presented here suggest

that use is indeed split between gathering performance metrics and tracking users.

We found no additional categories of use, and confirm that the examples presented

in the discussion thread reflect the broader usage on the web.

5.2.3 Lessons Learned & Recommendations

Based on insights from our case study, we extract a set of good privacy engineering

practices and make several concrete recommendations on how standards bodies can

improve the standardization process.

Information exchange between vendors and researchers is essential

Research can reveal theoretical privacy risks and their exploitation in the wild; it can

also provide data on the usage of features on the web. Standards-based platforms

such as the web are more conducive to research, and therefore attract more of it,

compared to proprietary platforms. Further, when implementations are open-source,

knowledge propagates not just from researchers to vendors but also among vendors.

Our case study illustrates these themes and their beneficial effects on privacy.

After Firefox was reported to return high-precision values on Linux (Section 5.2.1—

Discovery of privacy vulnerabilities), both Firefox and Chrome fixed the bug. Note

that although Chrome did not exhibit the vulnerability, it chose to preemptively re-

strict the precision of the readout to prevent the possibility. This illustrates knowledge

propagation between vendors, sparked by research results. Similarly, the specification

was updated to include a recommendation to avoid high-precision readouts (Section

5.2.1—Initial privacy improvements by browser vendors).

114

Still, the specification process can benefit from a deeper connection to research.

Deliberate attempts to break the privacy assumptions of specifications should be

actively incentivized—perhaps by funding attack research, or by organizing a forum

for academics and researchers to publish their privacy reviews.

The specification process should include a privacy review of implementa-

tions

On the modern web, proposed features often get deployed rapidly. At the time a spec-

ification is drafted, initial implementations are typically available in the development

versions of browsers. By the time the spec is finalized, several vendors may already

fully support a feature; in fact, the W3C requires at least two implementations to exist

before official recommendation. We recommend that specification authors study im-

plementations to prepare higher quality privacy assessments. Implementations enable

field testing of theoretical attacks and can be examined for potential API misuses.

With the Battery Status API, the privacy risk stemmed from a difficult-to-predict

interconnection of software layers, namely the browser acquiring information from

the operating system in order to supply it to a web script. Such a risk is difficult to

predict during the design phase, but becomes much easier to identify with access to

an implementation.

In contrast to the Battery Status API, consider the Ambient Light Events API,

which provides access to the light level of the device’s surroundings. The specification

was examined at the API design level, the implementation was tested, and the source

code was reviewed—all as part of the review process. Issues identified at the imple-

mentation level led both Chrome and Firefox to address a rounding issue related to

the light level data [253,263].

115

API use in the wild should be audited after implementation

In removing the Battery Status API from Firefox, Mozilla was influenced by the

paucity of legitimate uses of the API in the wild [87]. This underscores the impor-

tance of analyzing the early use of an API after deployment. The measurement work

presented in this chapter (Section 5.1 and Section 5.2.2) shows that fingerprinting

scripts are often early adopters of a new API. The benefits of doing an early audit

are two-fold: misuses of the API that weren’t found during the privacy assessment

may be discovered, and any uncovered vulnerability can be fixed at the specification

level before web compatibility and breakage become a concern.

In the past, fingerprinting abuse in the wild has been primarily measured by

the academic research community. As research on fingerprinting starts to lose its

novelty, academic researchers may lose the incentive for frequent measurements of

fingerprinting abuse. As a replacement, we suggest measurement through built-in

browser probes or a dedicated web crawling infrastructure run by browser vendors or

privacy advocacy groups.

Specification authors should carry out privacy assessments with multiple

threat models

Our case study shows how a seemingly innocuous mechanism can introduce privacy

risks. The original 2012 specification of Battery Status API characterized the finger-

printing risk as “minimal”, but did not include any analysis of that risk [173]. An

enumeration of the possible fingerprinting approaches, even if minimal in expected ef-

fectiveness, may have helped avoid the blind spot. We recommend that if any privacy

vulnerability is identified, possible exploitation should be modeled and analyzed in

detail. Privacy assessment methodologies must evolve to keep abreast of the growing

technical complexity of web APIs.

116

The case study shows the importance of assessing the data quality requirements of

APIs, as unnecessarily precise data may expose users to unforeseen privacy risks. It

also shows the importance of data minimization as a precaution against unexpected

future misuses. Indeed, the Battery Status vulnerability served as a motivating ex-

ample of these strategies in a W3C draft recommendation on browser fingerprint

minimization [107].

Specification authors must also enumerate and analyze all relevant threat mod-

els. Some implementers such as the Tor browser operate under much stricter threat

models. For example, most implementers may find it acceptable to reveal the user’s

operating system through a new API. But not the Tor Browser, as it attempts to

maintain a uniform fingerprint across all devices [4].

Avoiding over-specification supports innovative privacy solutions

W3C specifications are expected to be well defined, but do allow implementers signifi-

cant leeway. We recommend that standards exploit this flexibility to set a privacy floor

yet leave room for innovative privacy solutions by implementers. Over-specification

may have the unintended effect of rendering some privacy solutions uninteroperable

with the standard or with other web features.

Indeed, implementers have employed novel strategies to mitigate the privacy risks

of the Battery Status API (Section 5.2.1—Removal of the API from browsers). Yan-

dex, which reports that the battery is fully charged, effectively disables the API by

default. A user may choose to offer websites battery information in an explicit opt-in

manner [343]. This opt-in mechanism is also used for the Vibration API [170], pos-

sibly addressing potential misuses [18], and giving users a consistent privacy control

experience across APIs. In contrast, Firefox removed access to the entire API from

web content, but allowed the API to be accessible internally and to addon-sdk exten-

117

sions. This allows the API to still be used by privileged code while preventing abuse

from untrusted code.

Specifications should provide guidance for web developers, not just

browser vendors

Specifications should not only identify points of privacy concern for browser vendors

and other implementers, but should also provide useful guidance for web application

developers when possible. Web developers are ultimately the end consumers of new

features and are responsible for complying with local data protection regulations. To

assist these developers, specifications should highlight if a particular feature provides

sensitive data. Including this information in a specification will also assist browser

vendors in properly documenting the APIs.

The Battery Status API specification currently describes several privacy risks

and suggests mitigation strategies for browser vendors (Section 5.2.1—Initial privacy

improvements by browser vendors), but does not provide recommendations for web

developers. Other sensors maintained by W3C’s Device and Sensors Working Group

[13] have richer data sources and may pose more complex privacy threats. As such,

draft specifications of the Generic Sensors API [190] and the Web Bluetooth API

[332] recommend that web developers perform a privacy impact assessment prior to

deploying applications which make use of these APIs. It would be even more helpful

to highlight specific risks and providing concrete advice for mitigation.

A classic example of a standard that provides such detailed guidance is RFC

7231, which describes the HTTP protocol [129]. When discussing the disclosure of

sensitive information in URLs, the specification states “Authors of services ought to

avoid GET-based forms for the submission of sensitive data because that data will be

placed in the request-target. Many existing servers, proxies, and user agents log or

display the request-target in places where it might be visible to third parties. Such

118

services ought to use POST-based form submission instead.” The warning has proved

useful and necessary, but of course not sufficient. Indeed, studies have regularly found

leaks of PII through HTTP GET form submissions [180,216,302], which underscores

the need for such measurement research.

5.3 Summary

In this chapter we showed how device fingerprinting has increased in sophistication

and adoption (Section 5.1). We examined the difficulty of designing APIs to resist fin-

gerprinting, and distilled several suggestions for improving the process (Section 5.2).

We also have several promising findings: privacy tools already block the majority of

fingerprinting attempts (Section 5.1.7), and we show that measurement can help fill

the gaps. Similarly, new fingerprinting techniques can be discovered by bootstrapping

of off previously discovered scripts.

In contrast to stateful tracking (Chapter 4), device fingerprinting offers users

significantly less control. To defend against stateful tracking users can clear their

cookies, and browser vendors can continue to plug holes that allow trackers to work

around cookie clears. However, both browser vendors and users have far fewer options

to defend against device fingerprinting. Device fingerprints are already largely unique

[110, 193], and each new API introduced has the potential to expand the device’s

fingerprinting surface. To compound that, changing APIs that are already deployed

to reduce the fingerprinting surface is a difficult task [155].

In Chapter 6 we explore a related but distinct form of stateless tracking: tracking

with PII-derived identifiers. Similar to device fingerprints, identifiers which are based

on a user’s personal information (e.g., their name or email address) are persistent and

offer very limited user control. In contrast to device fingerprints, browser vendors and

users have even fewer options to prevent the use of personal information for tracking.

119

Chapter 6

Third-party trackers collect PII

Many user interactions on the web involve the exchange of Personally Identifiable

Information (PII). Users will provide their email address and name when registering

for an account, or give their mailing address and credit card information when making

a purchase. In this chapter we explore the ways trackers collect and use PII, both on

the web and in emails. In some cases the trackers do not intend to collect PII, and

rather receive it as a consequence of the structure of emails and websites. In other

cases the collection in intentional; a tracking identifier based on PII is more persistent

than those based on cookies (Chapter 4) or device fingerprinting (Chapter 5).

In particular, we found trackers collecting the hash of a user’s email address—

both in the contents of emails (Section 6.1.3) and on the web (Section 6.2.3). Email

addresses are unique and persistent, and thus the hash of an email address is an

excellent tracking identifier. LiveIntent, a “people-based” marketing company which

we study in more detail in Section 6.1.3, extolled the value of email addresses as

tracking identifiers in a blog post (emphasis ours): “As an identifier, email is both

deterministic and persistent. That is, when a consumer gives out a verified email,

it usually belongs to only that consumer. That can’t be said of all typical advertising

identifiers. Cookies, for example, live on desktop browsers that are often shared with

120

no way to distinguish who’s using it. And whereas email is cross-device, cookies

aren’t.” [138].

A user’s email address will almost never change. As a consequence, clearing cook-

ies, using private browsing mode, or switching devices won’t prevent tracking. The

hash of an email address can be used to connect the pieces of an online profile scat-

tered across different browsers, devices, and mobile apps. In fact, we even discovered

the same third party (Acxiom, a major data broker) receiving email address hashes

both within our emails measurements (Section 6.1.3) and web measurements (Sec-

tion 6.2.3). PII-based tracking identifiers can also serve as a link between browsing

history profiles before and after cookie clears.

The persistence and ubiquitous presence of a user’s PII makes defending against

tracking a difficult task. Most email clients allow users to disable the loading of

remote content, which prevents trackers from loading. However that causes emails

to be unreadable. Some mail clients proxy remote content or block cookies, which

helps reduce the privacy impact of a third-party tracker receiving a user’s PII. We

examine the current defenses deployed by mail clients in Section 6.1.6 and propose

our own defense based on resource filtering in Section 6.1.7. Turning to the web, a

user’s primary option for protection remains resource blockers (Section 6.2.5). We

found that most of the trackers studied in Section 6.2.4 were blocked by the major

tracking protection lists—several of those that weren’t at the time of measurement

were later added by the list maintainers (Section 6.2.5).

Not all PII collection by trackers is intentional. As was often the case in privacy

leaks studied by past research (Section 2.1.4), PII leaks occur as a result of the

web architecture; email addresses stored in Referer headers end up shared with

a bunch of unrelated third parties (Section 6.1.4), or scripts scoop up personal data

alongside other page information they collect to support their services (Section 6.2.4).

121

In the case of session replay scripts, the trackers themselves attempt to mitigate this

accidental collection, but we find these mitigations frequently fail in practice.

6.1 Trackers collect PII in emails

Email began as a non-interactive protocol for sending simple textual messages. But

modern email clients support much of the functionality of the web, and the explo-

sion of third-party web tracking has also extended to emails, especially mailing lists.

Surprisingly, while there is a vast literature on web tracking, email tracking has seen

little research.

The ostensible purpose of email tracking is for senders to know which emails have

been read by which recipients. Numerous companies offer such services to email

senders [51, 94, 160], and mail clients that have privacy features advertise them as

a way for users to protect their privacy from email senders [139, 238, 341]. But we

find that email tracking is far more sophisticated: a large network of third parties

also receive this information, and it is linked to users’ cookies, and hence to their

activities across the web. Worse, with many email clients, third-party trackers receive

the user’s email address when the user views emails. Further, when users click links

in emails, regardless of the email client, we find additional leaks of the email address

to trackers.

We show that much of the time, leaks of email addresses to third parties are

intentional on the part of commercial email senders. The resulting links between

identities and web history profiles belie the claim of “anonymous” web tracking. The

practice enables onboarding, or online marketing based on offline activity [42], as well

as cross-device tracking, or linking between different devices of the same user [65].

And although email addresses are not always shared with third parties in plaintext—

122

sometimes they are hashed—we argue that hashing does little to protect privacy in

this context (Section 6.3).

Email tracking is possible because modern graphical email clients render a subset

of HTML. JavaScript is invariably stripped, but embedded images and stylesheets

are allowed. These are downloaded and rendered by the email client when the user

views the email (unless they are proxied by the user’s email server; of the providers

we studied (Section 6.1.6), only Gmail and Yandex do so). Crucially, many email

clients, and almost all web browsers, in the case of webmail, send third-party cookies

with these requests, allowing linking to web profiles. The email address is leaked by

being encoded as a parameter into these third-party URLs.

When links in emails pointing to the sender’s website are clicked, the resulting

leaks are outside the control of the email client or the email server. Even if the

link doesn’t contain any identifier, the web browser that opens the link will send the

user’s cookie with the request. The website can then link the cookie to the user’s email

address; this link may have been established when the user provided her email address

to the sender via a web form. Finally, the sender can pass on the email address—

and other personally identifiable information (PII), if available—to embedded third

parties using methods such as redirects and referrer headers.

6.1.1 Collecting a dataset of emails

We now describe how we assembled a large-scale corpus of mailing-list emails. We

do not attempt to study a “typical” user’s mailbox, since we have no empirical data

from real users’ mailboxes. Rather, our goal in assembling a large corpus is to study

the overall landscape of third-party tracking of emails: identify as many trackers as

possible (feeding into our enhancements to existing tracking-protection lists) and as

many interesting behaviors as possible (such as different hashes and encodings of

emails addresses).

123

High-level architecture of crawler.
Assemble a list of sites. For each site:

• Find pages potentially containing forms. For each page:

– Find the best form on the page via top-down form
detection and bottom-up form detection. If a form
was found:

∗ Fill in the form

∗ Fill in any secondary forms if necessary

∗ Once a form has been submitted, skip the rest of
the pages and continue to next site

High-level architecture of server.
Receive and store email. For each email:

• Check for and process confirmation links.

Figure 6.1: High-level architecture of the email collection system, with the individual
modules italicized.

To achieve scale, we use an automated approach. We extended OpenWPM (Sec-

tion 3.1) to search for and fill in forms that appear to be mailing-list subscriptions.

The crawler has five modules, and the server that processes emails has two modules.

They are both described at a high level in Figure 6.1. We now describe each of the

seven modules in turn.

Assemble a list of sites. Alexa maintains a public list of the top 1 million

websites based on monthly traffic statistics, as well as rankings of the top 500 websites

by category. We used the “Shopping” and “News” categories, since we found them

more likely to contain newsletters. In addition, we visited the top 14,700 sites of the

1 million sites, for a total of 15,700 sites.

Detect and rank forms. When OpenWPM cannot locate a form on the landing

page, it searches through all internal links (<a> tags) in the DOM until a page con-

taining a suitable form is found. A ranked list of terms, shown in Table 6.1, is used

to prioritize the links most likely to contain a mailing list. On each page, forms are

detected using both a top-down and bottom-up procedure. The top-down procedure

124

Description Keywords Location
Email list registration newsletter, weekly ad, subscribe, inbox, email, sale alert link text
Generic registration signup, sign up, sign me up, register, create, join link text
Generic articles/posts /article, news/, /2017 link URL
Selecting language/region /us/, =us&, en-us link URL
Blacklist unsubscribe, mobile, phone link text

Table 6.1: OpenWPM chooses links to click based on keywords that appear in the
link text or URL. The keywords were generated by iterating on an initial set of terms,
optimizing for the success of mailing list sign-ups on the top sites. We created an
initial set of search terms and manually observed the crawler interact with the top
pages. Each time the crawler missed a mailing list sign-up form or failed to go to
a page containing a sign-up form, we inspected the page and updated the set of
keywords. This process was repeated until the crawler was successful on the sampled
sites.

examines all fields contained in <form> elements. Forms which have a higher z-index

and more input fields are given a higher rank, while forms which appear to be part of

user account registration are given a lower rank. If no <form> elements are found, we

attempt to discover forms contained in alternative containers (e.g., forms in <div>

containers) using a bottom-up procedure. We start with each <input> element and

recursively examine its parents until one with a submit button is found. For further

details, see Top-down form detection and Bottom-up form detection in Appendix A.5.

Fill in the form. Once a form is found, OpenWPM must fill out the input

fields such that all inputs validate. The crawler fills all visible form fields, including:

<input> tags, <select> tags (i.e., dropdown lists), and other submit <button> tags.

Most websites use the general text type for all text inputs. We surveyed a number

of top websites to determine common naming practices for input fields, and filled the

fields with the data of the expected type. For example, name fields were filled with

a generic first and last name. After submitting a form, we wait for a few seconds

and re-run the procedure to fill follow-up fields, if required. For further details, see

Determining form field type and Handling two-part form submissions in Appendix A.5.

125

Receive and store email. We set up an SMTP server to receive emails.1 The

server accepts any mail sent to an existing email address, and rejects it otherwise. It

then parses the contents of the mail and logs metadata (such as the sender address,

subject text, and recipient address) to a central database. All textual portions of the

message contents are written to disk.

Check for and process confirmation links. Our server will check the first

email sent to each email address to determine if the mailing list requires additional

user interaction to confirm the subscription. If the initial email’s subject or ren-

dered body text includes the keywords “confirm”, “verify”, “validate”, or “activate”,

we extract potential confirmation links from the email. For HTML emails we col-

lect links which match these keywords along with additional lower-priority keywords

“subscribe” or “click”. For plain-text emails we simply choose the longest link text.

Emails with the past-tense keywords “confirmed”, “subscribed”, and “activated” in

subject lines are skipped, as are links with the text “unsubscribe”, “cancel”, “deacti-

vate”, and “view”. If any link is found, it is visited using OpenWPM.

Form submission measurement. Our crawler discovered and attempted to

submit forms on 3,335 sites. We received at least one email from 1,242 (37%) of

those sites between the months of October 2016 and May 2017. To understand the

types of form submission failures, we ran a follow-up measurement in August 2017

where we took screenshots of the pages before and after the initial and follow-up

form submissions. We manually examined a random sample of sites on which a form

submission was attempted. We summarize the results in Table 6.2.

1The mail server receives emails using SubEtha SMTP, a library offering a simple low-level API
to handle incoming mail. The server accepts any mail sent to (RCPT TO) an existing email address,
and rejects it otherwise. The mail contents (DATA) are parsed in MIME format using the JavaMail
API, and the raw message contents are written to disk. MIME messages consist of a set of headers
and a content body, with the required Content-Type header indicating the format of the content;
notably, a multipart content body contains additional MIME message subparts, enabling messages
to be arranged in a tree structure. To save disk space, we recursively scan multipart MIME messages
for subparts with content types that are non-text (text/*), such as attached images or other data,
and discard them before storing the messages since we do not examine any non-textual content.

126

Submission classification % of sampled sites
Total successful submissions 38%
→Mailing lists subscription 32%
→User account registration 6%

Failed: required a CAPTCHA 16%
Failed: unsupported form fields 25%
Unable to classify via screenshots 21%

Table 6.2: Submission success status of a sample of 252 of the 3,335 form submissions
made during the sign-up crawl. The success and failure classification was determined
through a manual review of screenshots taken before and after an attempted form
submission.

When filling forms, OpenWPM will interact with user account registration forms,

mailing list sign-up forms, and contact forms. The successful submissions were mostly

mailing list sign-ups and a small number of user account registrations, which are

included as they can be tied to a mailing list. The failed submissions were mostly

caused by forms other than mailing lists. In fact, more than 70% of the failures

caused by a captcha or unsupported field were not mailing list form submissions.

Overall, only 11% of the sampled mailing list interactions resulted in a captcha.

Since our primary focus is mailing lists, we leave the evaluation of complex and

captcha-protected forms to future work.

Email corpus. The assembled corpus contains a total of 12,618 HTML emails

from 902 sites. We received an average of around 14 emails per site and a median

of 5. A few sites had very active mailing lists, with 20 sites sending over 100 emails

during the test period (October 2016 and May 2017). We observe that we received

no spam, which we confirmed both by manual inspection of a sample of emails as

well as by finding an exact one-to-one correspondence between the 902 senders in

our dataset and the unique email addresses that we generated. This ensures that the

results represent the behavior of the sites where we registered, rather than spammers.

127

6.1.2 Measurement methods

To measure the extent of tracking in emails we had two main tasks: simulating a

user who opens an email in a mail client, and simulating a user who clicks a link in

an email which opens in a web browser. We are able to automate both tasks with

OpenWPM using the methods outlined in this section.

Simulating a webmail client. To measure web tracking in email bodies we

render the emails using a simulated webmail client in an OpenWPM instance. Many

webmail clients remove a subset of HTML tags from the email body to restrict the

capabilities of rendered content. In particular, Javascript is exclusively removed,

while iframe tags and CSS [16] have mixed support. We simulate a permissive web-

mail client, one which disables Javascript and removes the Referer header from all

requests, but applies no other restrictions to the rendered content.

The email content is served on localhost, but is accessed through the domain

localtest.me (which resolves to localhost) to avoid any special handling the

browser may have for the local network. We classify remote content requests as

third-party using the method outlined in Section 3.2.1. We configure OpenWPM

to run 15 measurement instances in parallel. Each email is loaded twice in its own

measurement instance: once with a fresh profile, and then again keeping the same

browser profile after sleeping for 10 seconds. This is intended to allow remote content

on the page to load both with and without browser state present. Indeed we observe

some tracking images which redirect to new domains upon every subsequent reload

of the same email.

Sampling links from emails. To evaluate the privacy leaks which occur when

links in emails are clicked, we generate a dataset from the HTML content of all

emails and visit them individually in an instrumented browser. To extract the links

from mail content, we parse all email bodies with BeautifulSoup [2] and extract the

src property of all <a> tags. We sample up to 200 unique links per sender using

128

localtest.me

the following sampling strategy. First, we bin links across all emails from a sender

by the PS+12 and path of the link. Next, we sample one link from each bin without

replacement until there are no more links or we reach a limit of 200. This helps ensure

that we have as diverse a set of landing pages as possible by stripping fragment and

query string identifiers that may not influence the landing page.

Simulating link clicks. To simulate a user clicking a link, we visit each link

in an OpenWPM instance using a fresh browser profile. The browser fully loads the

page and sleeps for 10 seconds before closing. Unlike the email viewing simulation,

we enable both Javascript and Referer headers. This simulation replicates what

happens when a link is clicked in a standalone email client; only the URL of the

clicked link is passed to the browser for handling. In a webmail client, the initial

request resulting from the click may also contain a cookie and a Referer header

containing the email client’s URL. We do not simulate these headers in our crawl.

Classifying email leakage. We detect leaked email addresses using the method

outlined in Section 3.2.5. Email leaks may not be intentional. If an email address

is included in the query string or path of a document URL it may automatically

end up in the Referer header of subsequent requests from that document. Requests

which result in a redirect also often add the referrer of the previous request to the

query string of the new request. In many instances this happens irrespective of the

presence of an email address in the original request. The situation is made more

complex on the web since third-party Javascript can dynamically build URLs and

trigger requests.

The reduced HTML support and lack of Javascript execution in email clients

makes it possible to determine intentionality for most leaks. When an email is ren-

dered, requests can result from three sources: from elements embedded in the original

2For a definition of PS+1 see Section 3.2.1.

129

HTML, from within an embedded iframe (if supported by the client), or from a redi-

rected request.

1. If a leak occurs in a Referer header it is unintentional. For webmail clients the

Referer header (if enabled) will be the client itself. A mail sender can embed

an iframe which loads a URL that includes the user’s email address, with the

explicit intention that the user’s email leak to third parties via the Referer

header. However, we chose not to include this possibility because email senders

have multiple direct options for sharing information with third parties that do

not rely on the sparsely supported iframe tag.

2. If a leak occurs in a request to a resource embedded directly in the HTML of

the email body (and is not the result of a redirect) it is intentional. We can

determine intentionality since any request resulting from an HTML document

must have been constructed by the email sender. Note that this does not hold for

web documents, since embedded Javascript can dynamically construct requests

during the page visit.

3. If a request results from a redirect, the party responsible for the leak is the

party whose request (i.e., the triggering URL) responded with a redirect to the

new location (i.e., the target URL). We classify a leak as intentional if the

leaked value is hashed between the triggering URL and the target URL, or if

there are more encodings or hashes of the leaked value included in the target

URL than in the triggering URL. If the target URL includes a full copy of the

triggering URL (in any encoding) the leak is unintentional. All other cases

are classified as ambiguous, such the case where a target URL includes only

the query string of the triggering URL.

In the case of link clicks, we needed to detect email leakage from content rendered

in a web browser. Unlike email views, the Referer header was enabled for those

130

measurements. As such, we consider a party to have received a leak if it is contained

either in the URL or the Referer header of the resource request to that party. Email

addresses can also be shared with the party through the Cookie header, request POST

bodies, websocket connections, WebRTC connections, and so on. We consider these

out of scope for this analysis.

Measuring blocked tags in rendered emails. Tracking protection tools which

block resource requests offer users protection against the tracking embedded in emails.

We evaluate the effectiveness of these tools by checking the requests in our dataset

against two major blocklists: EasyList and EasyPrivacy [5]. These lists block adver-

tisement and tracking related requests, and are bundled with several popular blocking

extensions, including AdBlock Plus [1] and uBlock Origin [10]. We use the BlockList-

Parser library [3] to determine if a request would have been blocked3 by an extension

utilizing these lists. We expand upon our tracker detection method for web data

(Section 3.2.2), and classify a request as blocked if it matches any of the following

three conditions:

1. The request directly matches the filter list

2. The request is the result of a redirect and any request earlier in the redirect was

blocked.

3. The request is loaded in an iframe and the iframe document request (or any

resulting redirect) was blocked.

It is possible to do this classification in an offline fashion because of the lack

of Javascript support in email clients. This removes the need to run measurements

with one of the aforementioned extensions installed. In environments that support

Javascript, content can be loaded dynamically and as the result of interactions be-

3We set the parser options as we would expect them to be set for a request occurring in a webmail
client. For example, all requests are considered third-party requests.

131

Figure 6.2: CDF of third parties per email, aggregating data across the initial viewing
and re-opening of an email. In addition, 1.4% of emails have between 25 and 53 third
parties.

tween several scripts. In such an environment it is much more difficult to determine

which requests would have been blocked for every script appearing on the block list.

6.1.3 Privacy leaks when viewing emails

Remote resources embedded in email content can track users across emails. As we

show in our survey of email clients (Section 6.1.6), many email clients allow remote

resources to set persistent cookies and send those cookies with resource requests. In

total, we found that 10,724 of the measured emails (85%) embedded resources from

at least one third party, with an average of 5 third parties per email. The distribution

of embedded third parties is far from uniform; we found a median of two per email

and a small number of emails embedding as many as 50 third parties (Figure 6.2).

Table 6.3 shows the top third-party domains present in email at the time of mea-

surement. Many of these parties also have a large presence on the web (Section 4.1.3),

blurring the line between email and web tracking. On webmail clients, requests to

these cross-context third parties will use the same cookies4, allowing them to track

both a user’s web browsing and email habits. In total, the emails visited during our

crawls embed resources from 879 third parties.

4The availability of cookies in a webmail client depends on both the user’s browser and whether
the mail provider proxies remote content. See Section 6.1.6 for more detail.

132

Domain % of Emails % of Top 1M
doubleclick.net 22.2 47.5
mathtag.com 14.2 7.9
dotomi.com 12.7 3.5
adnxs.com 12.2 13.2
tapad.com 11.0 2.6
liadm.com 11.0 0.4
returnpath.net 11.0 ¡0.1
bidswitch.net 10.5 4,9
fonts.googleapis.com 10.2 39.4
list-manage.com 10.1 ¡0.1

Table 6.3: Top third-party domains by percentage of the 12,618 emails in the corpus.
For comparison, we show the percentage of the top 1 million websites on which these
third parties are present.

Leaks of email addresses to third parties are common

In addition to being able to track email habits, 99 third parties (11%) also gain

access to a user’s email address, whether in plaintext or hashed. In email clients

which support cookies, these third parties will receive the email address alongside

any cookies they’ve set on the user’s device. Trackers which are also present on the

web will thus be able to link this address with the user’s browsing history profile.

Around 19% of the 902 senders leaked the user’s email address to a third party

in at least one email, and in total 29% of emails contain leaks to third parties. We

find that a majority of these leaks, 62% of the 100,963 leaks to third parties, are

intentional. These intentional leaks mostly occur through remote content embedded

directly by the sender. Furthermore, 1% of leaks are classified as unintentional with

the remainder considered ambiguous. While we do not attempt to determine how

these identifiers are being used, plaintext and hashed emails can be used for persistent

tracking, cross-device tracking, and syncing information between parties.

The leaked addresses are often hashed. Although we can detect email addresses

hashed with 24 different functions and up to three nested layers, we only find MD5,

SHA1, and SHA256 in frequent use. Table 6.4 summarizes the number of senders and

133

Leak # of Senders # of Recipients
MD5 100 (11.1%) 38 (38.5%)
SHA1 64 (7.1%) 19 (19.2%)
SHA256 69 (7.6%) 13 (13.1%)
Plaintext Domain 55 (6.1%) 2 (2.0%)
Plaintext Address 77 (8.5%) 54 (54.5%)
URL Encoded Address 6 (0.6%) 8 (8.1%)
SHA1 of MD5* 1 (0.1%) 1 (1.0%)
SHA256 of MD5* 1 (0.1%) 1 (1.0%)
MD5 of MD5* 1 (0.1%) 1 (1.0%)
SHA384 1 (0.1%) 1 (1.0%)

Table 6.4: Email address leakage to third parties by encoding. Percentages are given
out of a total of 902 senders and 99 third-party leak recipients. All hashes are of the
full email address. Email “domain” is the part of the address after the “@”.
*These appear to be a misuse of LiveIntent’s API (Section 6.1.3).

receivers of each encoding. The relatively low diversity of hashes and encodings sug-

gests that these techniques are not being used to obfuscate the collection of email

addresses. In fact, the query parameters which contain hashed emails sometimes

identify the hash functions used in the parameter name (e.g., a string like ?md5=<md5

hash of email> appearing in the HTTP request). The design of APIs like LiveIn-

tent’s, which first receives an email address and then syncs with a number of other

parties (Section 6.1.3), suggests that these hashed address may be used to share or

link data from multiple parties.

Table 6.5 identifies the top organizations5 which received leaked email addresses.

This shows that email address collection from emails is largely consolidated to a few

major players, which are mostly distinct from the popular web trackers. In fact,

only one of the top 10 organizations, Neustar, was found in the top 20 third-party

organizations on the top 1 million websites in January 2016 (Section 4.1.3). Also

surprising is the prevalence of leaks to IP addresses, which accounted for eight of

the top 20 domains receiving email addresses. This may be due to the relatively

5We map domains to organizations using the classification provided by Libert [201], adding several
new email-specific organizations. When an organization could not be found, we use the PS+1.

134

Recipient Organization # of Senders
LiveIntent 68 (7.5%)
Acxiom 46 (5.1%)
Litmus Software 28 (3.1%)
Conversant Media 26 (2.9%)
Neustar 24 (2.7%)
apxlv.com 18 (2.0%)
54.211.147.17 18 (2.0%)
Trancos 17 (1.9%)
WPP 17 (1.9%)
54.82.61.160 16 (1.8%)

Table 6.5: Top organizations which received email address leaks by number of the
902 total senders in our dataset. A domain is used in place of an organization when
it isn’t clear which organization it belong to.

ephemeral nature of newsletter emails, which removes concerns of IP address churn

over time.

Reopening emails brings in new third parties

Despite the lack of Javascript support, email views are dynamic. The email content

itself is static, but any remote resources embedded in it may return different responses

each time the email is viewed, and even redirect to different third parties. To examine

the effects of this, we load every email first with a “clean” browser profile and then

again without clearing the profile. Surprisingly, the average Jaccard similarity [288]

between the sets of third parties loaded during the first and second views of the same

email is only 60%.

The majority of emails—two-thirds—load fewer third parties when the email is

reopened compared to the initial view. However, about 21% of emails load at least

one resource when an email is reopened that wasn’t present the first time. A small

number of third parties are disproportionately responsible for this—they load different

sets of additional third parties each time the email is opened (Table 6.6).

135

Redirecting Party Organization
Avg add’l

parties #S #E
pippio.com Acxiom 5.7 7 32
liadm.com* LiveIntent 3.7 68 1097
rlcdn.com Acxiom 1.7 11 551
imiclk.com MediaMath 1.3 2 4
mathtag.com MediaMath 1.1 11 382
alcmpn.com ALC† 0.8 6 132
emltrk.com Litmus 0.7 41 638
acxiom-online.com Acxiom 0.4 2 33
dyneml.com PowerInbox 0.1 3 13
adnxs.com AppNexus 0.1 19 277

Table 6.6: Top parties by average number of new third-party resources in a redirect
chain when an email was reloaded. The number of senders (# S) out of 902 total and
the number of emails (#E) out of 12,618 total on which this occurred is given for each
redirecting party. We exclude redirecting parties that only exhibited this behavior in
emails from a single sender. In total, there are 12 parties which exhibited this type
of redirect behavior.
* Includes statistics for chains which redirected to http://p.liadm.com/imp in the
first redirect. We observed a common pattern of URLs of the form li.firstparty.

com redirecting first to this endpoint which then redirected to a number of other third
parties.
† American List Counsel

The number of leaks between email loads stays relatively constant, with less than

50 emails leaking to new parties on the second load6. However, as the comparison of

Table 6.6 with Table 6.5 shows, many of the top leak recipients are also responsible for

redirecting to the highest number of new parties. Thus, reloading an email increases

the number of potential recipients of a leak if the redirectors share data based on the

email or email hash they receive.

Case study: LiveIntent

LiveIntent received email addresses from the largest number of senders, 68 in total.

In this section we analyze a sample of the request chains that resulted in leaks to

LiveIntent. Table 6.7 shows an example redirect chain of a single pixel embedded in

6We exclude leaks which occur to a different IP address on the second load. This occurs in 349
emails, but is less meaningful given the dynamic nature of IP address.

136

pippio.com
liadm.com
rlcdn.com
imiclk.com
mathtag.com
alcmpn.com
emltrk.com
acxiom-online.com
dyneml.com
adnxs.com
http://p.liadm.com/imp
li.firstparty.com
li.firstparty.com

Row Request URL
0 http://inbox.washingtonexaminer.com/imp?[...]&e=<EMAIL>&p=0

1 http://p.liadm.com/imp?[...]&m=<MD5(address)>&sh=<SHA1(address)>&sh2=<SHA256(address)>
&p=0&dom=<EMAIL_DOMAIN>

2 http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...]

3 http://x.bidswitch.net/ul_cb/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...]

4 http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswitch_ssp_id=liveintent&_redirect=[...]

5 http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswit[...]&_redirect=[...]&_expected_cookie=[...]

6 http://x.bidswitch.net/sync?dsp_id=126&user_id=84f3[...]&ssp=liveintent

7 http://i.liadm.com/s/19751?bidder_id=5298&licd=3357&bidder_uuid=<UUID_1>

8 http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm&google_sc

9 http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm=&google_sc=&google_tc=

10 http://p.liadm.com/match_g?bidder_id=24314&bidder_uuid=<UUID_2>&google_cver=1

11 http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=

12 http://pool.udsp.iponweb.net/sync?ssp=bidswitch&bidswitch_ssp_id=liveintent

Table 6.7: Redirect chain from a LiveIntent Email Tracking Pixel found in our dataset.
URL query strings are truncated for clarity (using [...]).

an email from the washingtonexaminer.com mailing list. The initial request (row 0)

was to a subdomain of washingtonexaminer.com, and included the user’s plaintext

email address in the e= query string parameter. The domain redirected to liadm.com

(row 1), a LiveIntent domain, and includes the MD5, SHA1, and SHA256 hashes of

the email address in the parameters m=, sh=, and sh2=. The URL also includes the

domain portion of the user’s address.

In rows 2 - 12, the request redirected through several other domains and back to

itself, exchanging what appear to be partner IDs and bidder IDs. In rows 7 and 10

LiveIntent received a UUID from the domain in the previous request, which could

allow it to exchange information with those trackers outside of the browser.

Request blockers help, but don’t fix the problem

Privacy conscious users often deploy blocking extensions, such as uBlock Origin, Pri-

vacy Badger, or Ghostery, to block tracking requests. Since webmail clients are

browser-based, these blocking extensions can also filter requests that occur while dis-

playing email content7. We use our blocked tag detection methodology (Section 6.1.2)

to determine which resources would have been blocked by the popular EasyList and

7Thunderbird supports most of the popular Firefox extensions, and as such Thunderbird users
can also deploy these defenses. See Table 6.12 for more details.

137

http://inbox.washingtonexaminer.com/imp?[...]&e=<EMAIL>&p=0
http://p.liadm.com/imp?[...]&m=<MD5(address)>&sh=<SHA1(address)>&sh2=<SHA256(address)>
&p=0&dom=<EMAIL_DOMAIN>
http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...]
http://x.bidswitch.net/ul_cb/sync?ssp=liveintent&bidder_id=5298&licd=3357&x=EGF.M[...]
http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswitch_ssp_id=liveintent&_redirect=[...]
http://p.adsymptotic.com/d/px/?_pid=12688&_psign=d3e69[...]&bidswit[...]&_redirect=[...]&_expected_cookie=[...]
http://x.bidswitch.net/sync?dsp_id=126&user_id=84f3[...]&ssp=liveintent
http://i.liadm.com/s/19751?bidder_id=5298&licd=3357&bidder_uuid=<UUID_1>
http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm&google_sc
http://cm.g.doubleclick.net/pixel?google_nid=liveintent_dbm&google_cm=&google_sc=&google_tc=
http://p.liadm.com/match_g?bidder_id=24314&bidder_uuid=<UUID_2>&google_cver=1
http://x.bidswitch.net/sync?ssp=liveintent&bidder_id=5298&licd=
http://pool.udsp.iponweb.net/sync?ssp=bidswitch&bidswitch_ssp_id=liveintent

Encoding # of Senders # of Recipients
Plaintext Address 34 (3.7%) 34 (66.7%)
MD5 21 (2.3%) 12 (23.5%)
SHA1 14 (1.6%) 6 (11.8%)
URL Encoded Address 4 (0.4%) 4 (7.8%)
SHA256 4 (0.4%) 2 (3.9%)
SHA384 1 (0.1%) 1 (2.0%)

Table 6.8: Encodings used in leaks to third parties after filtering requests with Ea-
syList and EasyPrivacy. Totals are given out of 902 email senders and 51 third-party
leak recipients in our dataset.

EasyPrivacy blocklists. We then examine the remaining requests to determine how

frequently email addresses continue to leak.

Overall, the blocklists cut the number of third parties receiving leaked email ad-

dresses from any sender nearly in half, from 99 to 51. Likewise, the number of senders

which leak email addresses in at least one email was greatly reduced, from 19% to

just 7%. However, as Table 6.8 shows, a significant number of leaks of both plaintext

and email hashes still occur. In Table 6.9 we see that there are still several third-

party domains which receive email address leaks, despite blocking. Several of these

domains are known trackers which could be included in the blocklists. In addition, IP

addresses and CDN domains are still recipients of leaked email addresses. Blocking on

other URL features, such as the URL path, could help reduce leaks to these domains.

6.1.4 Privacy leaks when clicking links in emails

In Section 6.1.3 we explore the privacy impact of a user opening and rendering an

email. In this section we explore the privacy impact of a user clicking links within

an email. Once a user clicks a link in an email, the link is typically opened in a

web browser. Unlike email clients, web browsers will typically support Javascript

and advanced features of HTML, creating many potential avenues for privacy leaks.

However, the only way an email address can propagate to a page visit is through the

direct embedding of the address in a link contained in the original email body.

138

Recipient Domain # of Senders
mediawallahscript.com 7
jetlore.com 4
scrippsnetworks.com 4
alocdn.com 3
richrelevance.com 3
ivitrack.com 2
intentiq.com 2
gatehousemedia.com 2
realtime.email 2
ziffimages.com 2

Table 6.9: The top third-party leak recipient domains in our dataset after filtering
requests with EasyList and EasyPrivacy. All recipients received leaks from less than
1% of the 902 senders studied.

Recipient Organization # of Senders
Google 247 (27.4%)
Facebook 160 (17.7%)
Twitter 94 (10.4%)
Adobe 81 (9.0%)
Microsoft 73 (8.1%)
Pinterest 72 (8.0%)
LiveIntent 69 (7.6%)
Akamai 69 (7.6%)
Acxiom 68 (7.5%)
AppNexus 61 (6.8%)

(a) The top leak recipient organizations.

Recipient Domain # of Senders
google-analytics.com 200 (22.2%)
doubleclick.net 196 (21.7%)
google.com 159 (17.6%)
facebook.com 154 (17.1%)
facebook.net 145 (16.1%)
fonts.googleapis.com 102 (11.3%)
googleadservices.com 96 (10.6%)
twitter.com 94 (10.4%)
googletagmanager.com 87 (9.6%)
gstatic.com 78 (8.6%)

(b) The top leak recipient domains.

Table 6.10: The top leak recipients based on a sample of simulated link clicks. All
values are out of 902 total senders in our dataset.

We found that about 11% of links contain requests that leak the email address

to a third party. About 12% of all emails contain at least one such link, and among

this subset, there are an average of 3.5 such links per email. The percentage of the

902 senders that leak the email address in at least one link in one email is higher:

35.5%. Finally, there were over 1,400 distinct third parties that received the email

address in one or more of our simulated link clicks. We expect that all statistics in

this paragraph, except the first, are slight underestimates due to our limit of 200 links

per sender.

139

Table 6.10a shows the top organizations that receive leaked email addresses, and

Table 6.10b shows the top domains. Over a quarter of senders leaked the email

address to Google in at least one link.

The most striking difference between these results and the corresponding results

for viewing emails is that these lists look very similar to the list of top third party

trackers (Section 4.1), with the addition of a small number of organizations specific to

email tracking. This motivates the privacy concern that identities could potentially

be attached to third-party web tracking profiles.

6.1.5 Evaluation of email tracking defenses

Defenses against tracking can be employed by several parties. We ignore mail senders

and trackers themselves, since email tracking is a thriving commercial space and

our evidence suggests that senders by and large cooperate with trackers to leak email

addresses. We instead focus on parties who have an incentive to protect the recipient’s

privacy, namely the recipient’s mail server, mail user agent, and the web browser.

The lines between these roles can be blurry, so we illustrate with two examples.

Consider a user reading Yahoo mail via Firefox. The email server is Yahoo, the

email client is Firefox together with Yahoo mail’s client-side JavaScript, and the web

browser is again Firefox. Or consider a user reading her university mail, via Gmail’s

IMAP feature, on her iPhone. For our purposes, both the university and Gmail count

as email servers, since either of them is in a position to employ defenses. The email

client is the Gmail iOS app, and the web browser is Safari. Table 6.11 summarizes

the applicability of various defenses to the three roles. We discuss each in turn.

Content proxying. Email tracking is possible because of embedded content

such as images and CSS (cascading style sheets). To prevent this, some email servers,

notably Gmail, proxy embedded content. Thus, when the recipient views the email,

the mail user agent does not make any requests to third parties.

140

Defense Email server Email client Web browser
Content proxying X
HTML filtering X X
Cookie blocking X X
Referrer blocking X X X
Request blocking X X

Table 6.11: Applicability of each of the five possible defenses to each of the three
contexts in which they may be deployed. An X indicates that the defense is applicable.

This defense doesn’t prevent the recipient email address being leaked to third

parties, since it is leaked by being encoded in the URL. In fact, it hinders efforts by the

mail client to prevent email address leakage (see request blocking below). However,

it prevents third parties from learning the user’s IP address, client device properties,

and when the email was read (depending on how the proxy is configured). Most

importantly, it prevents the third-party cookie from being sent, and thus prevents

the third party from linking the user’s email address to a tracking profile. In this way

it is a complement to cookie blocking.

This defense can be deployed by the email server. Conceivably the email client

might have its own server component through which embedded resources are proxied,

but no email clients currently work this way, and further, it would introduce its own

privacy vulnerabilities, so we ignore this possibility.

HTML filtering. HTML filtering refers to modifying the contents of HTML

emails to mitigate tracking. It may be applied by the email server or the client,

but it is more suitable to the server since the client can generally achieve the same

effect in other ways, e.g., by request blocking or modifying the rendering engine. It

is rarely applied today, and only in minimal ways. In Section 6.1.7 we prototype a

comprehensive HTML filtering technique.

HTML filtering modifies the content of the email body, and thus might inter-

fere with some email authentication methods, notably Domain Keys Identified Email

(DKIM). However, since filtering is carried out by the recipient’s mail server (Mail

141

Transfer Agent) and not by intermediate mail relays, filtering can be done after the

signature has been verified, and thus there is no impact on email authentication.

The following three techniques are applicable in one of two scenarios: when the

email client requests embedded resources, or when the web browser handles clicks on

links in emails.

Cookie blocking. Cookie blocking in the email client prevents third-party cook-

ies from being sent when embedded content is requested. It is especially relevant in

the webmail context, where the cookie allows third parties to link an email address

to a web browsing profile. Even otherwise, blocking cookies is helpful since it makes

it harder for third parties to compile a profile of the recipient’s email viewing (they

can always do this for the subset of emails where the email address is leaked).

Referrer blocking. If the email client sends the Referer header when loading

embedded resources, it can allow several types of leaks. Depending on the implemen-

tation, the referrer may encode which client is being used and which specific email is

being read. If the recipient forwarded an email to someone else and the email is being

viewed in a different user’s mailbox, it could leak this information. Worse, if the client

supports iframes in emails, and the email address happens to be in the iframe URL,

all requests to resources embedded in that iframe will accidentally leak the email ad-

dress. For all these reasons, referrer blocking is a privacy-enhancing measure. There

is little legitimate use for the referrer header in the context of email. While clients

can certainly block the header (as can web browsers), servers can do this as well,

by rewriting HTML to add the rel=‘noreferrer’ attribute to links and inserting a

Referrer Policy via the meta tag.

Request blocking. Request blocking is a powerful technique which is well known

due to ad blockers and other browser privacy extensions. It relies on manually com-

piled filter lists containing thousands of regular expressions that define third-party

content to be blocked. The most widely used ad-blocking list is EasyList, and the

142

Mail Client Platform
Proxies
Content

Blocks
Images Blocks Referrers

Blocks
Cookies

Ext.
Support

Gmail Web Yes No* L: Yes, I: Yes† Yes† Yes
Yahoo! Mail Web No Yes L: Yes, I: No No Yes
Outlook Web App Web No Yes No No Yes
Outlook.com Web No No* No No Yes
Yandex Mail Web Yes No* L: Yes, I: Yes† Yes† Yes
GMX Web No No* No No Yes
Zimbra Web No Yes No No Yes
163.com Web No No* No No Yes
Sina Web No No No No Yes
Apple Mail iOS No No* Yes Yes No
Gmail iOS Yes No Yes Yes No
Gmail Android Yes No Yes Yes No
Apple Mail Desktop No No* Yes Yes No
Windows Mail Desktop No No* Yes No No
Outlook 2016 Desktop No Yes Yes No No
Thunderbird Desktop No Yes Yes Optional Yes

Table 6.12: A survey of the privacy impacting features of email clients as of May 2017.
We explore whether the client proxies image requests, blocks images by default, blocks
referrer headers from being sent (with image requests “I:” and with link clicks “L:”),
blocks external resources from settings cookies, and whether or not the client supports
request blocking extensions — either through the browser (for web clients) or directly
(in the case of Thunderbird).
*Images are only blocked for messages considered spam.
† Blocking occurs as a result of proxied content.

most widely used tracker-blocking list is EasyPrivacy. Filter list based blocking in-

troduces false positives and false negatives [346], but the popularity of ad blocking

suggests that many users find the usability trade-off to be acceptable. While request-

blocking extensions are supported primarily by web browsers, some email clients also

have support for them, notably Thunderbird.

6.1.6 Survey of tracking prevention in email clients

We built an email privacy tester to discover which defenses are deployed by which

popular email servers and clients.8 Browser support for tracking protection has been

extensively studied elsewhere [225], so we do not consider it here.

8https://emailtracking.openwpm.com/

143

https://emailtracking.openwpm.com/

The email privacy tester allows a researcher to enter an email address and the

name of an email client, and then sends an email to that address containing a tracking

image and a link. The image and the link both have unique URLs. The researcher

views the email in the specified email client, and then clicks on the link. The server

records the following information: the email address, the email client, the IP address,

timestamp, and headers sent for both the image and the link requests. The list of

headers includes the cookie, referrer, and user agent.

In May 2017 we created accounts with a total of 9 email providers and tested them

with a total of 16 email clients using various devices available in our lab. We analyzed

the data recorded by the email privacy tester, and summarize the results in Table

6.12. We found that if defenses are deployed by email servers at all, they are only

enabled for specific email clients (typically the default webmail client). Therefore we

do not report on servers separately, but instead fold it into the analysis of clients.

We also found that HTML filtering in a general form is not deployed, but only in

the limited form of image and referrer blocking, so we report on that instead. We

summarize our findings in Table 6.12.

6.1.7 Our proposed defense against email tracking

We argue that tracking protection should be at the center of a defensive strategy

against email tracking. It can be employed either via HTML filtering on the server

or via request blocking on the client. Tracking protection (and ad blocking) based on

filter lists has proven to be effective and popular in web browsers, and its limitations

manageable. The other defenses we examined all have serious drawbacks: for example,

content proxying comes at a cost to the email server and makes email leaks worse,

and cookie blocking is at best a partial solution. We propose to improve tracking

protection in two ways: server-side content filtering and improving client-side tracking

protection lists.

144

Server-side email content filtering. First, we prototype a server-side HTML

filtering module. We use the existing, standard EasyList and EasyPrivacy filter lists.

Our filtering script is written in Python using the BlockListParser library [3]. It

scans for any HTML content (text/html) in email bodies, parses those contents,

identifies embedded resources (images or CSS) whose URLs match one of the regular

expressions in the filter lists, strips them out, and rewrites the HTML.

To test the effectiveness of HTML filtering, we ran our leak detection procedure

on the filtered corpus of emails. We exclude one sender due to a measurement issue.

We found that 11.0% of senders will leak email addresses to a third party in at least

one email, and 11.5% of emails contain embedded resources which leak email to a

third-party. Overall, 62 third parties received leaked email addresses, down from

99. As tracking-protection lists improve (see below), we can expect these numbers

to decrease further. These numbers are very close to the corresponding numbers

for request blocking (Section 6.1.3). The two techniques aren’t identical: the one

difference is that in static files, filtering is limited to the URLs present in the body of

the HTML and will miss those that result from a redirect. However, this difference

is small, and we conclude that HTML filtering is essentially as effective as request

blocking.

Note that webmail users can already deploy tracking protection, but server-side

deployment will help all users, including those who use email clients that don’t support

request-blocking extensions.

Filling gaps in tracking-protection lists. As a second line of defense, we use

our dataset to identify a list of 27,125 URLs representing 133 distinct parties which

contain leaks of email addresses, but which aren’t blocked by EasyList or EasyPrivacy.

These include first parties in addition to third parties. We are able to identify first-

party tracking URLs by observing groups of URLs of similar structure across different

first-party domains. For example, 51 email senders leaked the user’s email address

145

to a URL of the form li.[public suffix + 1]/imp, which appears to be part of

LiveIntent’s API (Section 6.1.3). We summarize the most common structures in the

leaking URLs missed by tracking protection lists in Table 6.13.

URL Pattern # of Senders
li.[PS+1]/imp 51 (5.7%)
partner.[PS+1]/ 7 (0.7%)
stripe.[PS+1]/stripe/image 4 (0.4%)
p.[PS+1]/esp/open 4 (0.4%)
api.[PS+1]/layouts/section[N] 4 (0.4%)
[PS+1]/customer-service 3 (0.3%)
mi.[PS+1]/p/rp 3 (0.3%)
dmtk.[PS+1]/ 3 (0.3%)
links.[PS+1]/e/open 3 (0.3%)
eads.[PS+1]/imp 3 (0.3%)

Table 6.13: The top URL patterns from URLs which leak email addresses and are
missed by tracking protection lists (Section 6.1.3). The patterns are generated by
stripping request URLs to hostname and path, replacing the public suffix plus one
with [PS+1], replacing integers with [N], and stripping the last portion of the path
if it ends with a file extension. The patterns are ranked by the number of senders
which make at least one leaking request matching that pattern in any of the sender’s
emails. All values are given out of the total of 902 senders studied.

We suspect that the reason so many trackers are missed is that many of them are

not active in the regular web tracking space. We have made the list of leaking URLs

missed by tracking protection lists publicly available.9 It should be straightforward

to add regular expressions to filter lists based on these URLs; we suggest that filter

list creators should regularly conduct scans of email corpora to identify new trackers.

6.1.8 Limitations

We mention several limitations of the work presented in this section. First, despite

the large number of heuristics that went into identifying and submitting forms, it is a

fundamentally hard problem, and our crawler fails in many cases, including pages re-

quiring complex mouse interactions, pages containing very poorly structured HTML,

9https://gist.github.com/englehardt/6438c5d775ffd535b317d5c6ce3cde61

146

https://gist.github.com/englehardt/6438c5d775ffd535b317d5c6ce3cde61

and captcha-protected form submission pages. Moreover, it is difficult to program-

matically distinguish between successful and failed form submissions. Looking at

received network data is impractical, since responses could easily include text for

both success and failure messages. On the other hand, looking only at changes in

the rendered text on the webpage is more feasible, but would require handling many

possible edge cases (e.g., page redirects, alerts, pop-up windows, iframes) and might

still be too unreliable to use as a metric for success.

Second, our corpus of emails is not intended to be representative, and we are

unable to draw conclusions about the extent of tracking in the typical user’s mailbox.

Third, our simulation of a user viewing emails assumes a permissive user agent. We

expect that this closely approximates a webmail setup with default browser settings

(on browsers except Safari, which blocks third-party cookies by default), but we have

not tested this assumption.

6.2 Trackers collect PII on the web

The vast majority of websites today embed one or more third-party scripts in a

first-party context. This practice is fundamentally insecure, because it negates the

protections of the Same-Origin Policy and gives such scripts access to virtually all

sensitive data on the page (see Section 2.1). Our goal in this section is to highlight

the way in which third parties can and have used these privileges to access sensitive

user data.

Specifically, we examine two distinct attacks. These attacks do not exploit bugs in

the browser or first-party code. Rather, their existence is an inevitable consequence

of loading untrusted JavaScript in a first-party origin.

1. Autofill exfiltration. Many web browsers automatically fill in values for

known form fields. Once a user’s credentials have been filled, they are vul-

147

nerable to exfiltration by any script present on the page. This attack is known

to browser vendors, but only some browsers have mitigations in place, and they

are imperfect. In fact, scripts may actually insert forms into pages that are

invisible to the user as bait for autofill.

2. Whole-DOM exfiltration. Some third party scripts serialize the entire DOM

(Document Object Model, the tree of objects that constitutes the web page) and

send it to their servers. These are providers of analytics services that analyze

user clicks and other interactions on the page.

In both attacks we observe the collection of sensitive user data by third-party

scripts. In some cases, that data appears to be used for cross-site tracking.

6.2.1 Measurement configuration

To study each attack, we crawled 50,000 sites from the Alexa top 1 million. We used

the following sampling strategy: visit all of the top 15,000 sites, randomly sample

15,000 sites from the Alexa rank range [15,000 100,000), and randomly sample 20,000

sites from the range [100,000, 1,000,000). This combination allowed us to observe the

attacks on both high and low traffic sites. On each of these 50,000 sites we visited 6

pages: the front page and a set of 5 other pages randomly sampled from the internal

links on the front page. All measurements were taken between June and November

2017 on Amazon EC2 servers.

6.2.2 Measurement methods

Our core measurement contribution is the development of a bait technique, which

allows us to inject sensitive user data into the context of real websites in such a way

that third-party scripts can access and exfiltrate the data without further interaction.

We do not attempt to simulate a real user’s interaction with a site—which would

148

require us to perform tasks that are difficult to automate, such as registering for an

account—and instead spoof that our measurement instance has already interacted

with the site. As a concrete example, we use OpenWPM’s browser extension to spoof

that our measurement instances have saved user credentials for every site we visit.

Our work is conceptually similar to past studies that have detected privacy leaks

to third parties in real user data [277,318], but our decision to simulate user data has

several distinct advantages. By simulating user data we are able to collect detailed

measurements without the risk of compromising user privacy. Our technique also

limits the detection of benign data collection flows, such as a first party sending data

to a third-party partner when the user finishes a login. A consequence of this is that

we may bait sites in ways that a real user interaction would never create, such as

saving user credentials on a site that has no account support. This is not a problem

for our measurements however, as our goal is to detect third parties which collect

data from any pages which embed them.

The bait technique has three core components: (1) injecting sensitive data into

the page context, (2) monitoring access to the data and attributing access to a specific

third party, and (3) detecting transmission of the data to a third-party server. We

extend OpenWPM to carry out the first two components, and provide details on how

we do so in the attack sections below. The third component, data exfiltration, is

detected using the method detailed in Section 3.2.5.

6.2.3 Browser login managers are vulnerable to abuse

Mechanism. All major browsers have built-in login managers that save and au-

tomatically fill in username and password data to make the login experience more

seamless. The set of heuristics used to determine which login forms will be autofilled

varies by browser, but the basic requirement is that a username and password field

be available.

149

Browser Engine Autofill Support (2017) Current Autofill Support (2018)
Firefox Gecko immediate immediate (considering change [67])
Safari WebKit immediate requires user interaction with form [44]

Chrome Blink
p: interaction with page

u: immediate
u & p: interaction with page [90]

Edge EdgeHTML immediate immediate

Table 6.14: Browser autofill behavior before and after the release of our research
results. Prior to releasing our results all of the major browsers would autofill user-
names as soon as the user visited the page. After we released our results [28], Chrome
changed their autofill policy to require user interaction with the page for both user-
name (u) and password (p) [90] and Safari updated their autofill to require explicit
user interaction with the form [44].

At the time of measurement, login form autofilling didn’t require user interaction;

all of the major browsers would autofill the username (often an email address) imme-

diately, regardless of the visibility of the form. Chrome didn’t autofill the password

field until the user clicks or touches anywhere on the page. The other browsers we

tested didn’t require user interaction to autofill password fields. Thus, third-party

javascript was able to retrieve the user’s saved credentials by creating a form with

fields for username and password, which would have been autofilled by the login

manager. After releasing our results, some browser vendors changed their default

behavior—we summarize browser autofill behavior before and after our discoveries in

Table 6.14.

The underlying vulnerability of login managers to credential theft has been known

for years. Much of the past discussion has focused on password exfiltration by ma-

licious scripts through cross-site scripting (XSS) attacks [70, 72]. Fortunately, we

didn’t find password theft on the 50,000 sites that we analyzed. Instead, we found

third-party scripts embedded by the first party abusing the login manager to extract

email addresses.

Figure 6.3 details the attack. First, a user fills out a login form on the page and

asks the browser to save the login. The third-party script does not need to be present

on the login page. Then, the user visits another page on the same website which

150

example.com/homeexample.com/home

example.com/login

User visits a non-login page on the same site; this time the third party script is present

3. The script reads the email address from the form
and sends it hashes to third-party servers

1. Third-party script injects an
invisible login form

User submits a login or registration form, clicks “Save” to store the credentials.

username@exam

username@p...

example.com/home

2. Login manager fills in user’s
email and password

username@p... ● (email)
● (email)
● (email)

Third-party script
is not present on

the login page

Figure 6.3: The process by which a script can extract a user’s credentials from the
browser login manager. First, the user logs into a website and insrtucts the browser to
save their credenitals for that site; the third party does not need to be present on the
login page. Next, the user visits a portion of the site which embeds the third-party
script in the main page context but does not have a login box. The third-party script
injects an invisible login box into the page, waits for the browser to autofill it, and
then extracts the username.

includes the third-party script. The script inserts an invisible login form, which is

automatically filled in by the browser’s login manager. The third-party script retrieves

the user’s email address by reading the populated form and sends the email hashes

to third-party servers.

Measurement methods. To study password manager abuse, we extended Open-

WPM to simulate a user with saved login credentials and added instrumentation to

monitor form access. We used Firefox’s nsILoginManager interface to add creden-

tials as if they were previously stored by the user. We did not otherwise alter the

functionality of the password manager or attempt to manually fill login forms.

151

The fake credentials acted as bait (Section 6.2.2). To detect when the credentials

were accessed, we added the following probes to OpenWPM’s Javascript monitoring

instrumentation (Section 3.1.2):

1. Monitor the DOM mutation events DOMNodeInserted and DOMAttrModified.

These are used to detect the injection of a new login form into the DOM. When

either of these events fire, we serialize the inserted or modified HTML elements

for events that contain a password element.

2. Instrument HTMLInputElement and HTMLFormElement to intercept access to

form input fields. We log the input field value that is being read to detect when

the bait email (autofilled by the built-in password manager) was sniffed.

3. Store HTTP request and response data, including POST bodies to detect when

the username or password is sent to a remote server using the leak detection

method detailed in Section 3.2.5.

For both the JavaScript (1, 2) and the HTTP (3) instrumentation we store

JavaScript stack traces at the time of the function call or the HTTP request. We

parse the stack trace to pin down the initiators of the HTTP request or the parties

responsible for inserting and accessing a form. Specifically, we select scripts that do

the following:

• Inject an HTML element containing a password field

• Read the email address from the input field automatically filled by the browser’s

login manager

• Send the email address, or a hash of it, over HTTP

Applying this selection criteria to our measurement data collected during June

2017 produces a list of scripts that may use this technique to collect email addresses.

152

Company Script address # of sites
Adthink https://static.audienceinsights.net/t.js 1047

OnAudience http://api.behavioralengine.com/scripts/be-init.js 63

Table 6.15: We found two scripts which misused the browser login manager to extract
user email addresses. These scripts were found on 1,110 of the Alexa top 1 million
sites in the September 2017 Princeton Web Census crawl (Section 4.1). After we
released our results in December 2017, both companies removed the functionality
from their scripts.

We verified that the forms inserted by these scripts were not visible to the user.

We also reproduced the email address collection by manually registering for several

websites that embed the scripts and allowing the browser to save the credentials in

the process.

Results. We found two scripts, loaded from AdThink and OnAudience, which

used this technique to extract email addresses from login managers on the websites

which embed them. We summarize our findings in Table 6.15. After our findings

were released publicly in December 2017, the two companies stopped the practice.

We provide code snippets from both scripts in Appendix A.8. Adthink’s script

sent the MD5, SHA1 and SHA256 hashes of the email address to its server (secure.

audienceinsights.net), as well as the MD5 hash of the email address to the data

broker Acxiom (p-eu.acxiom-online.com). OnAudience’s script sent the MD5 hash

of the email back to its own server. In addition, their script also collected browser

features including plugins, MIME types, screen dimensions, language, timezone in-

formation, user agent string, OS and CPU information. The script then generated

a hash based on this browser fingerprint. OnAudience’s script was most commonly

present on Polish websites, including newspapers, ISPs and online retailers. 45 of the

63 sites that embedded the script at the time of measurement had the “.pl” country

code top-level domain.

153

https://static.audienceinsights.net/t.js
http://api.behavioralengine.com/scripts/be-init.js
secure.audienceinsights.net
secure.audienceinsights.net
p-eu.acxiom-online.com

6.2.4 Third-party collection of PII through DOM scraping

Mechanism. The top-level context’s DOM can contain sensitive information. When

a user logs in to a site, the site may display her name or email address in the text of the

page. Similarly, users may enter personal information, such as their address, credit

card number, or social security number into forms on the page. For some sites this

information may be even more sensitive, such as the user’s bank account balance or

medical history. Third-party scripts embedded in the top-level context have access to

the same information that’s displayed to the user when she visits the site. Malicious

scripts can abuse this access to surreptitiously collect user information. However, this

sensitive information can also get scooped up by benign scripts which collect portions

of the DOM as part of the services they provide first-parties.

In this section we examine third-party scripts which collect the full contents of

the DOM, as well as those that monitor all mouse movements and key presses on

the page. There are a number of ways a script can grab the contents of the DOM,

including: calling document.body.outerHTML or document.body.innerHTML, loop-

ing through all elements in the DOM and serializing them individually, or by calling

document.body.textContent to retrieve all text on the page. To monitor mouse

movements or key presses the scripts can add event listeners for these DOM events

on nodes at the top of the DOM. Finally, scripts can listen to the blur or change

events that are fired when a user interacts with input elements on the page.

Detection Method. We take a two-step approach to detecting whole DOM exfil-

tration. First, we append several unique bait values to the DOM of all frames present

on a page and search for these values in the resulting network traffic. The values are

added by creating a new div element and adding it directly to document.body. The

div has the style display:none set to prevent it from altering the layout of the page.

The added values include an email address and the string Welcome <FirstName>

<LastName>!, where <FirstName> and <LastName> are unique strings. We chose to

154

include bait values that match the format of a real users PII to detect if any scripts

are parsing information out of the DOM. We use the leak detection method detailed

in Section 3.2.5 to discover leaks of the injected email address or name.

We discovered several instances where scripts compress and split their payload

over multiple requests, which our standard leak detection method fails to detect. To

capture these instances, we take a different approach:

1. Determine which sites contain scripts that might be exfiltrating the

DOM. For each first-party site, we sum the total size of data sent to each third

party in POST requests on that site. We then flag any third party that receives

a total amount of data which exceeds the compressed size of the page source of

the first-party site. Finally, we generate a list of sites that include at least one

of these third parties.

2. Re-measure the candidate sites with and without a large chunk of

data appended to the DOM. For all sites on which we suspect third-party

DOM exfiltration, we re-measure the site twice: once with a 200 Kilobyte chunk

appended directly to the body element of the DOM, and once without any data

appended to the DOM. We chose 200 Kilobytes as the chunk size because it was

large enough to outweigh small differences in page size between the crawls (such

as a changing headline), but not so large as to disrupt services that collected

data from the DOM.

3. Measure the difference in payload size for each third party between

the crawls. We sum the total payload size across all POST requests which

occur during a single page visit for each third party. We then compare the total

POST request size between the two crawls, and flag any third-party script that

had a difference greater than the compressed length of the injected chunk of

data (approximately 150 Kilobytes).

155

The two detection methods described above provide a list of scripts which appear

to collect data from the DOM. To better understand how the scripts are monitor-

ing interaction with the DOM we use OpenWPM’s Javascript call monitoring (Sec-

tion 3.1.2) instrumentation to record the following: calls to innerHTML, outerHTML,

innerText, and outerText on the HTMLBodyElement or the documentElement. In

addition we observe all event listener registrations on the HTMLBodyElement, the

window.document object, and the window object. We examine registrations which

monitor events that capture the user’s mouse movements, page interactions, and key

presses.10 We take a script’s use of these events as a signal that they are monitoring

user interaction with the DOM in addition to scraping the contents of the DOM.

Finally, we use a combination of the presence of DOM scraping, the registra-

tion of event handlers monitoring user interaction, and a manual examination of the

marketing materials of the companies involved to determine the type of services the

third-party script offers. These results of this classification are summarized below.

Results. We found no instances of malicious scripts parsing the DOM to exfiltrate

user data. However, we did find a number of companies doing full-page scraping,

collecting all of the text on the page or serializing portions of the DOM. Although

these services do not appear to be built with the intention of collecting PII, the broad

nature of the collection techniques makes it very easy for PII to get scooped up with

the rest of the collected data. We summarize our findings in Table 6.16. The majority

of the scripts we discovered sent requests which included the name and email address

inserted by our instrumentation. Some of the scripts were only discovered by our

chunk injection measurement due to unsupported payload encodings. In all cases,

the data was transferred to a third-party collection endpoint via a POST request.

10The event listener registration events that we monitor include: mouseup, mousedown,
click, auxclick, mousemove, wheel, dblclick, select, contentmenu, mouseleave, mouseout,
mouseenter, mouseover, keydown, keyup, keypress, and scroll.

156

Service Purpose # sites

Yandex Metrika Analytics 198
FullStory Analytics 55
Hotjar Analytics 48
SkimLinks Advertising 34
Sessioncam Analytics 18
UserReplay Analytics 15
Transifex Translation 9
VWO Analytics 7
Tealeaf Analytics 7
Jornaya Analytics 5
IntelliTXT Advertising 4
Digidip Advertising 4
RedLink Analytics 3
Localizer Translation 2
Viglink Advertising 2
Prosperent Advertising 1
Wovn Translation 1
xclaimwords Unknown 1
Bkred.ru Unknown 1
ABTasty Analytics 1

(a) Services detected by both ID injection
and chunk injection.

Service Purpose # sites

Clicktale Analytics 37
Smartlook Analytics 31
Lucky Orange Analytics 23
Quantum Metric Analytics 11
Inspectlet Analytics 10
Mouseflow Analytics 5
LogRocket Analytics 2
SaleMove Support 1

(b) Services detected only by chunk injec-
tion. Since our chunk injection measure-
ment was run on a sample of the 50,000 sites
measured in (a), we expect the site counts
for these services to be underrepresented rel-
ative to (a).

Table 6.16: The top companies that we discovered scraping information from the
DOM at the time of our June or November 2017 measurements. The apparent pur-
pose of data collection includes: Analytics: heatmaps, session recording, form an-
alytics, Advertising: mouse-over keyword ads, automatic affiliate link insertion,
Translation: automatic localization, and Support: live customer support. Scripts
grab either the text on the page or a representation of the DOM, which can range
from a complete serialization to a custom encoding of some elements.

The majority of the companies collect DOM data to provide analytics services

to the first party. Of these, the most commonly provided service is “session replay”,

which was offered by 16 companies at the time of measurement. Session replay services

allow the first party to observe how their page was rendered for the user and how

the user interacted with their site. All of the session replay providers collected some

custom encoding of all nodes and text in the DOM, in some cases including all of

the inline script and CSS content. We believe this is necessary to allow the recording

to accurately reflect the experience of the user, given that many pages are built

dynamically and may change from user to user.

157

In the remaining cases, text was extracted from the DOM and sent to a third

party. While we aren’t able to measure exactly how the text data is used, we studied

the marketing material of the companies to better understand how it might be used.

Several of the companies provided automatic monetization of product or retailer ref-

erences by attaching affiliate links to specific keywords. For example, a reference to

a new model of Nike shoes would be replaced by an affiliate link to a store where the

user can purchase that shoe. IntelliTXT’s advertising product is slight variation of

this; rather than replacing the text with an affiliate link, it replaces the text with a

mouse-over advertisement that displays in a tooltip next to the text. Finally, several

of the companies offer translation services, which include automatic localization of

site content.

We found no evidence that suggests the scraped data was used for advertisement

personalization or cross-site tracking by any of the companies analyzed. In fact,

several of the analytics companies explicitly forbid the collection of sensitive user in-

formation using their services [134,292], and provide automated and manual features

that first parties can use to prevent the collection of sensitive user data. As an exam-

ple, we observed code in VigLink and Wovn scripts which filter the contents of the

collected data using regular expressions. VigLink’s filtering appears to be motivated

by a desire to protect user privacy, as evidenced by the inclusion of references to

pii. Their script prevented the collection of email addresses and strings of integers

between 6 and 18 characters in length. Wovn’s filtering appeared to be intended to

prevent the collection of non-translatable strings and included email addresses.

Case study: the ineffectiveness of session replay redaction tools. To

better understand the effectiveness of the data privacy features offered by third-

party services, we performed an in-depth examination of the redaction tools provided

by six of the companies offering session recording services: FullStory, UserReplay,

SessionCam, Hotjar, Yandex, and Smartlook. Session replay analytics are meant

158

Redacted Field FullStory UserReplay SessionCam Hotjar Yandex Smartlook
Name # G# G# # # #
Email # G# G# # # #
Phone # G# G# # # #

Address # G# G# #† # #
SSN # G# G# # # #

DOB # G# G# # # #
Password G# G#

CC Number G#* G# G# #
CC CVC G# G# # #

CC Expiry G# G# # #

Table 6.17: Summary of the automated redaction features for form inputs enabled
by default from each company at the time of measurement in November 2017.
Filled circle: Data is excluded; Half-filled circle: equivalent length masking;
Empty circle: Data is sent in the clear
* UserReplay sent the last 4 digits of the credit card field in plain text
† Hotjar masked the street address portion of the address field

to provide insights into how users interact with websites and discovering broken or

confusing pages. However the extent of data collected by these services is likely to

exceed user expectations; text typed into forms is collected before the user submits

the form, and precise mouse movements are saved, all without any visual indication

to the user.

The replay services offer a combination of manual and automatic redaction tools

that allow publishers to exclude sensitive information from recordings. However, in

order for leaks to be avoided, publishers would need to diligently check and scrub all

pages which display or accept user information. For dynamically generated sites, this

process would involve inspecting the underlying web application’s server-side code.

Further, this process would need to be repeated every time a site is updated or the

web application that powers the site is changed.

To better understand the effectiveness of these redaction practices, we set up test

pages during November 2017 and installed replay scripts from the six companies. All

of the companies studied offered some mitigation through automated redaction, but

the coverage offered varied greatly by provider. UserReplay and SessionCam replaced

all user input with an equivalent length masking text, while FullStory, Hotjar, and

159

Smartlook excluded specific input fields by type. We summarize the redaction of

other fields in Table 6.17.

Automated redaction is imperfect; fields are redacted by input element type or

heuristics, which may not always match the implementation used by publishers. For

example, FullStory redacts credit card fields with the autocomplete attribute set to

cc-number, but will collect any credit card numbers included in forms without this

attribute. Indeed, we discovered credit card data leaking to FullStory from input

fields that lacked autocomplete attributes (see Table 6.18).

To supplement automated redaction, several of the session recording companies,

including Smartlook, Yandex, FullStory, SessionCam, and Hotjar allowed sites to

further specify input elements to be excluded from the recording. To effectively

deploy these mitigations a publisher would need to actively audit every input element

to determine if it contains personal data. A safer approach would have been to mask

or redact all inputs by default, as was done by UserReplay and SessionCam, and

allow whitelisting of known-safe values. Even fully masked inputs provide imperfect

protection. For example, the masking used by UserReplay and Smartlook at the time

of measurement leaked the length of the user’s password.

Several of the session recording companies also offered redaction options for display

content, i.e. content that would be collected through scraping the DOM. Unlike user

input recording, none of the companies appeared to provide automated redaction of

displayed content by default; all displayed content on our test page ended up leaking.

Instead, session recording companies expect sites to manually label all personally

identifying information included in the DOM. Sensitive user data has a number of

avenues to end up in recordings, and small leaks over several pages can lead to a large

accumulation of personal data in a single session recording.

To understand how well the manual redaction features work in practice, we man-

ually examined around 50 of the top sites on which we found session replay scripts.

160

We discovered several categories of sensitive information leaks during our interac-

tions, including: passwords, medical information, student data, credit card data, and

purchase information. Table 6.18 summarizes our findings.

We observed password leaks on three of the surveyed websites. On two of the

sites, propellerads.com and johnlewis.com, the password leak was caused by the

way the sites implemented a “show password” feature. In both instances, the sites

stored the user’s password in two input elements: one of type password and one

of type text. When the user interacts with the “show password” feature, the sites

would swap the two input elements, causing the user’s password to become visible.

Both FullStory’s and SessionCam’s automated redaction rules failed to capture the

input element of type text. In the third case, the password leak was caused by a

bug in the way FullStory’s manual redaction feature applied to input fields of type

password. In all cases we were informed by the third party services that the issues

were later fixed.

With the exception of walgreens.com, the remainder of the leaks largely appeared

to be caused by a sparse use of redaction on those pages. Walgreens made extensive

use of display content redaction, but the user’s name and prescription choices ap-

peared on subsequent pages of the checkout process. Similarly, the identity verifica-

tion page asked several multiple choice questions containing sensitive user data—the

radio buttons for the questions were redacted from recordings, but the mouse traces

would still reveal the user’s answers.

6.2.5 Countermeasures to PII collection

Publishers, users, and browser vendors can all take steps to prevent data exfiltration.

To protect against autofill exfiltration, publishers can isolate login forms by putting

them on a separate subdomain, which prevents autofill from working on non-login

pages. This does have drawbacks including an increase in engineering complexity.

161

propellerads.com
johnlewis.com
walgreens.com

First party Third party Data Leaked Cause
walgreens.com FullStory prescriptions, name, identity unredacted display data

propellerads.com FullStory passwords “show password” feature
johnlewis.com SessionCam passwords “show password” feature
wpengine.com FullStory passwords bug in FullStory redaction

gradescope.com FullStory student data unredacted display data
lenovo.com FullStory billing information unredacted display data
bonobos.com FullStory credit card data unredacted input data

Table 6.18: A sample of sensitive data leaks to session replay companies that we
observed during a manual inspection of sites between November 2017 and February
2018. The sites may have changed their practices since our measurements.

Similarly, publisher could only use third-party services that scrape DOM data and

record user behavior on pages that don’t contain sensitive user data.

Users can install ad blockers or tracking protection extensions to prevent tracking

by invasive third-party scripts. The domains used to serve the two autofill extraction

scripts (behavioralengine.com and audienceinsights.net) were blocked by the EasyPri-

vacy blocklist at the time of measurement. Many of the domains used to serve the

session replay scripts were already blocked by EasyPrivacy at the time of our measure-

ments. Several of those that weren’t, including domains from FullStory, Smartlook,

and UserReplay were added after we released our results publicly [116].

Turning to browser vendors, the simplest defense against autofill exfiltra-

tion is to allow users to disable autofill. For instance, the Firefox preference

signon.autofillForms can be set to false to disable autofilling of credentials. A

less crude defense is to require user interaction before autofilling login forms. This

approach was taken by Safari shortly after we released our results [44]. We summarize

the browser vendor response to our research in Table 6.14.

The upcoming W3C Credential Management API [335] requires browsers to dis-

play a notification when user credentials are provided to a page. Browsers may display

the same notification when login information is autofilled by the built-in login man-

agers. Likewise, browsers could detect the presence of scripts which scrape the DOM

or provide session replay services and give users a visual indication of their presence or

162

walgreens.com
propellerads.com
johnlewis.com
wpengine.com
gradescope.com
lenovo.com
bonobos.com

activation. Displays of this type won’t directly prevent abuse, but they make attacks

more visible to publishers and privacy-conscious users.

6.3 The ineffectiveness of hashing for privacy

We observed trackers collecting hashed email addresses in the content of emails (Sec-

tion 6.1.3) as well as around the web (Section 6.2). The putative justification for

email address leaks in the online ad tech industry is that the address is hashed. For

example, Criteo’s privacy policy states: “A hash of your email [...] does not permit

your identification” [96]. Similarly, LiveIntent—the largest recipient of leaked email

addresses in our study (Section 6.1.3)—states “To de-identify this information, either

we or our business partners [hash it]” [205].

However, hashing of PII, including emails, is not a meaningful privacy protection.

Compared to hashing of passwords, there are several reasons why hashing of email

addresses is far more easily reversible via variants of a dictionary attack. First, while

(at least) some users attempt to maximize the entropy of passwords, most users aim to

pick memorable emails, and hence the set of potential emails is effectively enumerable.

Due to the availability of cloud GPUs, trillions of hashes can be attempted with low

cost [212]. In fact, past research studies achieved email hash recovery rates between

42% [211] and 70% [64] using simple heuristics to generate email addresses. Second,

unlike password hashing, salting is not applicable to email hashing since multiple

third parties need to be able to independently derive the same hash from the email

address.

Perhaps most importantly, if the adversary’s goal is to retrieve records correspond-

ing to a known email address or set of email addresses, then hashing is pointless—the

adversary can simply hash the email addresses and then look them up. For example,

if the adversary is a surveillance agency, as we examine in Chapter 7, and seeks to

163

retrieve network logs corresponding to a given email address, this is trivially possible

despite hashing.

6.4 Summary

In this chapter we showed that leaks of personal data are common on the web and in

email content. Email security and privacy has not received much research attention

despite its central importance in digital life. This is of concern not only because

trackers can learn the recipient’s IP address, when emails were opened, and so on,

but also because these third parties are by and large the same ones that are involved

in web tracking. We also observe web trackers collecting much of the same user

data, albeit using different approaches. This means that trackers can connect email

addresses to browsing histories and profiles, which leads to further privacy breaches

such as cross-device tracking and linking of online and offline activities. Indeed, email-

hash-based tracking is straightforward cross-device tracking, since users tend to both

view emails and share their email addresses with websites across all of their devices.

Even network adversaries can benefit from the PII leaks in emails and across

the web. The NSA is known to piggyback on advertising cookies for surveillance

(Section 2.2), and our work suggests one way in which a surveillance agency might

attach identities to web activity records, in line with our findings in Chapter 7. Indeed,

nearly 91% of URLs which leaked email addresses during our email viewing simulation

were sent without encryption.

164

Chapter 7

The surveillance implications of

web tracking

How much can an adversary learn about an average user by surveilling web traffic?

This question is surprisingly tricky to answer accurately, as it depends on four things:

the structure of the web, the mapping of web resources to the topology of the global

Internet, the web browsing behavior of a typical user, and the technical capabilities

and policy restrictions of the adversary. In this chapter we introduce a method-

ology for quantifying the efficacy of passive surveillance. Our work combines web

measurement, network measurement, a client model (that incorporates user browsing

behavior, web browser policies and settings, and privacy-protecting extensions), and

an adversary model.

More specifically, the adversary has the ability to inspect packet contents and

wishes to either track an individual target user or surveil users en masse. A key

challenge for the adversary is the lack of persistent identifiers visible on the network.

However, the adversary can observe HTTP cookies in transit. Indeed, both the NSA

and GCHQ are known to use such cookies for surveillance (Section 2.2).

165

In past chapters we established that third-party cookies are ubiquitous on the

web (Section 4.1). This chapter starts with three insights. First, the presence of

multiple unrelated third-party cookies on most web pages, albeit pseudonymous, can

tie together most of a user’s web traffic without having to rely on IP addresses (Figure

7.1). Thus the adversary can separate network traffic into clusters, with each cluster

corresponding to only one user (or more precisely, one browser instance). A single

user’s traffic may span more than one cluster if the linking is imperfect.

Second, a significant portion of a typical user’s traffic traverses U.S. borders even

when the user is outside the U.S. and browses local content. As it turns out, such sites

frequently include third-party resources such as analytics scripts, tracking pixels, and

advertisements from U.S. servers. This leaves foreign users particularly vulnerable to

the NSA’s wiretaps within the U.S. under the “one-end foreign” rule (Section 2.2).

Third, although most popular websites now deploy HTTPS for authentication,

many web pages reveal an already logged-in user’s identity in plaintext. Furthermore,

we find that third-party trackers impede HTTPS adoption on sites (Section 7.4),

making it more difficult for sites to mitigate this attack. Thus, an adversary that can

wiretap the network can not only cluster together the web pages visited by a user,

but can then attach real-world identities to those clusters. This technique relies on

nothing other than the network traffic itself for identifying targets.

Figure 7.1 illustrates the basis for this chapter. The adversary observes the user

visit three different web pages which embed trackers X, Y or both. The user’s IP

address may change between visits to each page, though we assume it is consistent

for the request to site A and the request to A’s embedded tracker X. But there is

no way to tie together her visits to pages A and B until she visits C after which all

three visits can be connected. The unique cookie from X connects A and C while the

one from Y connects B and C. We assume here that the user has visited pages with

both trackers before so that cookies have already been set in her browser and will be

166

C.com

IP 3.3.3.3
"ID-X=xxx"

IP 3.3.3.3
"ID-Y=yyy"

IP 3.3.3.3

"ID-C=ccc"
B.com

IP 1.1.1.1

"ID-A=aaa"

X
X

Y

A.com

Y

IP 2.2.2.2

"ID-B=bbb"

IP 1.1.1.1
"ID-X=xxx"

IP 2.2.2.2
"ID-Y=yyy"

Figure 7.1: Illustration of link between each of a single browser’s visits to three first-
party pages using two different third-party tracking cookies. The user accesses the
web at three different times, behind three different IP addresses.

sent with each request. While IP address is a convenient method to link a request to

a first party page to the corresponding request to an embedded third party tracker,

it is not necessary. In Section 7.5.1 we show how this linkage can be achieved even if

the IP address cannot be observed at all or if an IP address is shared by many users.

7.1 Threat model

In developing a threat model, there are two extremes, neither of which is desirable.

The first is to assume that the adversary is all-powerful, as in cryptographic security

arguments. Such a model is both uninteresting and largely irrelevant to the real

world. The other extreme is to focus too closely on the NSA or GCHQ’s activities.

Such a model may not yield insights that apply to other surveillance programs and

the results may be invalidated by changes to the respective agency’s programs. We

seek a careful middle ground and arrive at a model that we believe is realistic enough

to influence policy debates and privacy tool development, yet general enough for our

analyses and algorithms to be of independent scientific interest and for our results to

hold up well over time.

We consider only passive attacks for several reasons. First, passive attacks ap-

pear to be more powerful than generally realized, and we wish to highlight this fact.

167

Second, even an active attack must usually begin with passive eavesdropping. An

adversary must have refined criteria for targeting the active attack. Finally, almost

all active attacks carry some risk of detection. Passive attacks much easier to mount,

especially at large scale.

We consider a powerful adversary with the ability to observe a substantial portion

of web traffic on the Internet backbone. The adversary’s view of a given user’s traffic

may be complete or partial. We model partial coverage in two ways: by assuming

that a random subset of the user’s HTTP requests and responses flows through one

of the adversary’s wiretaps, or that the adversary taps the portion of the user’s traffic

that traverses United States borders. While the NSA has many interception points

outside U.S. borders as well, the U.S.-only model provides a useful, approximate lower

bound of the agency’s abilities. We also assume that the adversary cannot routinely

compromise HTTPS, so cookies or other identifying information sent over HTTPS

are of no use.

The adversary may have one of two goals: first, he might want to target a specific

individual for surveillance. In this case the adversary knows either the target’s real-

world identity or a single ID cookie known to belong to the target (whether on a first

or third party domain). Second, the adversary might be engaged in mass surveillance.

This adversary would like to “scoop up” web traffic and automatically associate real-

world identities with as much of it as possible.

The adversary’s task is complicated by the fact that the IP addresses of the

target(s) may change frequently. A user’s IP address could change because she is

physically mobile, her ISP assigns IP addresses dynamically, or she is using Tor.

Leaked GCHQ documents show that their search interface even warns analysts to

take care when selecting data on dynamic IPs [135]. Browsing from a smartphone

is a case worth highlighting: Balakrishnan et al. find that “individual cell phones

can expose different IP addresses to servers within time spans of a few minutes” and

168

that “cell phone IP addresses do not embed geographical information at reasonable

fidelity” [48].

To link users across different networks and over time, the adversary aims to utilize

first-party and third-party unique cookies assigned to browser instances by websites.

He can easily sniff these on the network by observing the “Cookie” field in HTTP

request headers and the “Set-Cookie” field in HTTP response headers. Cookies set

by an “origin” (roughly, a domain) that have not expired are automatically sent as

part of requests to the same origin.

7.2 Measurement methods

We wish to simulate real users browsing over a period of time, detect the creation of

unique identifiers, and measure the flow of both unique pseudonymous and real-world

identifiers to adversaries with differing collection capabilities. We present a summary

of our methods below, and provide detailed descriptions of our measurement and

analysis methods in the following subsections.

1. Define all clients and adversaries to be studied, according to the following:

• client: (location, browsing model, browser configuration) which encodes

the client’s geographic and network location, which sites the client visits,

and the browser settings and plugins the client browses with.

• adversary: (location, policy restrictions) which encodes the adversary’s

geographic and network location, and the policy restrictions on data use

and collection.

2. For each unique (user location, browsing model) pair of interest, generate N

simulated browsing profiles as defined in Section 7.2.1 and create a correspond-

ing client instance for each one.

169

3. Use the measurement infrastructure (Section 3.1) to simulate the users defined

in Step 2 and collect all network traffic (i.e. HTTP requests, responses, and

cookies). Our measurements are summarized in Section 7.2.2.

4. For each (client location, web resource) pair of interest, determine the geo-

graphic path of traffic using the procedure described in Section 7.2.3.

5. Run the ID cookie detection algorithm detailed in Section 3.2.4 to flag identi-

fying cookies

6. For each (client, adversary) pair of interest, do the following for all instances of

the client and average the results:

• filter the list of requests based on the geographic location and policy re-

strictions of the adversary using the geographic mapping in Step 4.

• run the cookie linking algorithm detailed in Section 7.2.4 using the ID

cookies detected in Step 5.

• report the size of the connected components in the linking graph (as a

ratio of total number of visits)

• report the number of sites known to leak real-world identifiers (Sec-

tion 7.2.5) contained in each component.

7.2.1 Browsing models

We use two browsing models to create simulated user profiles. One of our models

was a naive one – the user visits random subsets of the Alexa top 500 sites local to

the location of the measurement instance. For example, a measurement instance in

Japan would sample the Alexa top-500 sites for users in Japan, while a measurement

instance in Ireland would sample from the Alexa top-500 sites for users in Ireland.

170

Our other browsing model aims for realism by making use of the AOL search query

log dataset. The dataset contains queries made by 650,000 anonymous users over a

three month period (March–May 2006). We create a browsing profile from a user’s

search queries as follows. First, we remove repeated queries. Next, for every search

query performed by the user, we submit the query to Google search and retrieve the

links for the first five results. Users were selected on the basis that they performed

between 50 to 100 unique queries which resulted in browsing profiles of 250 to 500

URLs. This is almost identical to the method used by Liu et al. [203].

Of course, only a subset of real users’ web browsing results from web searches.

Nevertheless, we hypothesize that our profiles model two important aspects of real

browsing histories: the distribution of popularity of web pages visited, and the topi-

cal interest distribution of real users. Popular websites may embed more trackers on

average than less popular sites, and websites on the same topic may be more inter-

connected in terms of common embedded trackers. Failure to model these aspects

correctly could skew our results.

The reason we recreated the users’ searches on a search engine at the time of

measurement rather than simply using the sites visited by the AOL users (available

in the dataset) is that the distribution of websites visited by real users changes over

time as websites rise/fade in popularity, whereas the distribution of users’ interests

can be expected to be more stable over time.

7.2.2 Measurement configuration

We deployed OpenWPM version 0.1.0 on Amazon EC21 instances in three regions:

Northern Virginia, United States, Dublin, Ireland, and Tokyo, Japan. We chose

these to achieve as much geographic diversity as possible from Amazon’s limited set

of regions. Each measurement took place on an m3.medium instance of Ubuntu 14.04

1https://aws.amazon.com/ec2/

171

https://aws.amazon.com/ec2/

in June 2014. All measurements were ran using 25 simulated profiles for each (user

location, browsing model, browser configuration) combination.

When making measurements from within the U.S., we were able to utilize the more

realistic AOL browsing model. We used it under serveral browser configurations:

no cookie blocking, blocking third-party cookies from sites which the user has not

yet visited as a first-party, blocking all third-party cookies, setting the DNT flag,

browsing with HTTPS Everywhere installed, and browsing with Ghostery installed

and configured to block all possible entities.

For measurements outside of the Unites States, we were not able to utilize the

AOL browsing model as the search terms and results are likely biased towards U.S.

users. Instead, we fall back to the Alexa browsing model when doing comparisons

between geographic locations. To compare measurements between the United States,

Japan, and Ireland we used an Alexa browsing model localized to the most popular

sites within each country.

To run the identifying cookie detection algorithm described in Section 3.2.4, we

also require synchronized measurements of each site visit from two separate machines.

We ran these measurements from the Northern Virginia location and visited all of the

links which may be visited by any other measurement instance (13,644 links total).

For all measurements, web pages were visited approximately once every ten sec-

onds. We set a 60 second timeout per visit and restarted the browser with consistent

state in the event of a crash.

7.2.3 HTTP Traffic geolocation

In order to determine the if an HTTP request is bound for a specific location of inter-

est, we augment commercially available geolocation data with additional measurement

data. After each measurement instance finished browsing, we ran a traceroute2 to

2Our traceroutes were configured to use a single probe per hop with a maximum of 25 hops.

172

each unique hostname and recorded the full output. All IPs returned in each hop of

the traceroute were geo-located with the MaxMind GeoLite23 country databases.

The mapping between IP and physical location is not one-to-one. Instead, there

may be many servers in different locations which all share the same IP address for

various purposes. One such example is anycasting, the process by which several nodes

share the same address and the user is routed to the nearest node.4

Thus, when determining if an HTTP request enters a specific country it is not

sufficient to simply geolocate the IPs returned from a traceroute to that host. As a

solution, we implement a simplified version of the geo-inconsistency check proposed

by Madory, et.al. [208]. We check that the minimum round-trip time (RTT) returned

by a traceroute to each hop is greater than the physical minimum RTT assuming a

direct fiber-optic connection between the two locations.

Algorithm 1 summarizes the steps we take to perform this origin-specific geoloca-

tion check. Broadly, if the geolocation of a specific hop returns as being within the

country of interest, we find the travel time between the (latitude, longitude) pairs of

the origin server and the geolocated IP. If geolocated IP’s location is on the country

level, we choose the closest point in the geolocated country from the origin location.

We then use the haversine forumla to calculate the distance between the two points

and find the minimum RTT:

minRTT = 2 ∗ haversine distance ∗ n
c

where c is the speed of light in units matching the distance measurement and n is the

optical index of the fiber. In our study, we use n = 1.52 as the reference optical fiber

index.

3http://dev.maxmind.com/geoip/geoip2/geolite2/
4CloudFlare, for example, claims to use anycasting as part of their content delivery network:

https://www.cloudflare.com/features-cdn

173

http://dev.maxmind.com/geoip/geoip2/geolite2/
https://www.cloudflare.com/features-cdn

Data: httpRequest, testCountry
Result: True/False if httpRequest enters testCountry
origin ← latitude/longitude of origin server
hostname ← parse httpRequest.url
for each hop in hostname traceroute do

location ← geolocate(hop.IP)

if location not in testCountry then
continue

if location not city code then
location ← closest point to origin within country

dist ← haversine(origin,location)
minRTT ← 2 ∗ minimum time to travel dist

if hop.RTT > minRTT then
return True

end
return False

Algorithm 1: Origin-specific geolocation check

This check does not guarantee that a specific request enters a country, as network

delays could artificially push a traceroute RTT above the threshold. Our assumption

of a straight-line connection and optical fiber index is also unlikely to hold in practice.

Instead, this check provides a more realistic upper-bound on the amount of traffic an

adversary at a specific geographic location can monitor. For example, this check

eliminated the numerous examples we observed of traceroutes originating in Ireland

and Japan having geolocations within the United States with RTTs of < 5ms.

We use a simplified version of this check when examining if requests are exiting

the United States. Since a request can be bound for any non-U.S. destination, we do

not attempt to find the closest point in each country. Instead, we only check that the

observed RTT is greater than the minimum RTT to the geolocation point regardless

of the point’s location.

7.2.4 Transitive Cookie Linking

Building the graph. Once we determine which cookies contain unique identi-

fiers, we use the http requests, http responses, and http cookies tables of the

174

OpenWPM crawl database to cluster traffic. From these tables, we construct cookie

linking graph using Algorithm 2, which creates a graph with two node types: URL

nodes and Cookie nodes. URL nodes are identified by the tuple (U, <node url>,

<request’s geographic destination>) and cookie nodes consisting of the tuple

(C, <cookie value>).

Edges are created under the assumption that a network adversary will be able to

link all requests and responses for a single page visit together if he can both follow

the chain of referrer and redirect headers for HTTP requests from a single IP. URL—

URL edges are created under two conditions: (1) one url node was observed as the

Referer on a request to the connected url node or (2) one url node was returned in the

location field of a 301 or 302 redirect response to the request for the connected url. An

adversary is only able to link together different page visits by the shared cookie values

loaded on each page. As such, URL—Cookie edges are created whenever a cookie

value is observed in the Cookie field of an HTTP Request header or the Set-Cookie

field of an HTTP Response header. Notice that the only linking between separate

page visits in the graph occurs when two HTTP requests/responses happen to link to

the same Cookie node, while referrer and redirection chaining provides linking within

a page visit.

Analyzing the graph. In our analysis all graphs only contain traffic for a single

user. This allows us to find the connected components within the graph and utilize

the giant connected component (GCC) to find the amount of a single user’s traffic an

adversary is able to link. Once the GCC is found, we take the intersection of the set

of URLs contained in the GCC with the set of URLs visited during the measurement

to find the amount of top-level page visits an adversary is able to observe. When

the adversary applies the attack in a multi-user setting, they will have many disjoint

subgraphs per user of varying size. Depending on the adversary’s goal, these clusters

175

Data: httpRequests and httpResponses for useri
Result: Graph Gi for useri with URL & Cookie nodes
for each visited url do

for httpRequest do
if HTTPS then

continue

urlNode ← createNode (U, req.url, req.inUS)
G.addNode(urlNode)

if req.referer is not empty then
refNode ← createNode (U, ref.url)
G.addNode(refNode)
G.addEdge(refNode, urlNode, req.inUS)

if req.cookie is not empty and is identifying then
cookieNode ← createNode (C, cookie.value)
G.addNode(cookieNode)
G.addEdge(cookieNode, urlNode, req.inUS)

end
for httpResponse with Set-Cookie do

if HTTPS then
continue

if cookie is identifying then
cookieNode ← createNode (C, cookie.value)
urlNode ← node for requested url
G.addNode(cookieNode)
G.addEdge(cookieNode, urlNode, req.inUS)

end
for httpResponse with location field do

if HTTPS then
continue

urlNode ← node for requested url
locNode ← createNode (U, loc.url)
G.addNode(locNode)
G.addEdge(locNode, urlNode, req.inUS)

end

end
Algorithm 2: Cookie Linking algorithm

could be processed to link them individually to real world identities, or disambiguated

by identifying disjoint sets of cookies for the same sites.

When evaluating adversaries restricted by policy or geographic constraints, an

additional pre-processing step is required before finding the GCC. Utilizing the ge-

176

olocation data from Section 7.2.3, we are able to filter nodes from the cookie linking

graph based on geographic restrictions. In order to determine the amount of traffic

for a specific user that a U.S. restricted adversary has access to, we filter all edges

from the cookie linking graph that were not added due to U.S. bound requests. We

create a subgraph from this filtered edge list and continue the normal linking analysis.

7.2.5 Identity leakage in popular websites

We conducted a manual analysis in June 2014 of identity leaks on the most popular

pages which allow account creation. The top-50 pages are a useful representation

for how heavily-used sites with user accounts manage data, and are more likely to

be visited by a real user. We identified 50 of the Alexa top 68 U.S. sites that allow

for account creation and signed up test accounts when possible. We then examined

the homepage, account page, and several random pages on each site to see if any of

identifiers are displayed on an HTTP page. If so, an adversary collecting HTTP traffic

for that user could inspect the contents of the page to find the identifier and link it

to any tracking identifiers also loaded on the page. These leaks should be considered

a lower bound to the data that would be available to an adversary in practice; our

review of pages did not consider identifiers that were not displayed to the user (but

would be available in the page source), we did not visit all pages on the sites, and we

did not include PII-based tracking identifiers (Chapter 6).

7.3 Network adversaries can effectively cluster

traffic

In the course of our measurements we make nearly 100,000 page visits to 13,644

distinct sites under several client and adversary models. Of these 13,644 sites, nearly

177

all of them (13,266) make requests for external content from a host different than the

domain of the host visited.

7.3.1 Clustering

We evaluate the effectiveness of our proposed attack under several (adversary, client)

models. We are primarily interested in the number of web pages visited by a user

which are located in the giant connected component (GCC) relative to the number of

pages with embedded third-parties. We focus on large connected components because

the probability that a cluster will have at least one page visit that transmits the

user’s real-world identity in plaintext increases with the size of the cluster. Manual

inspection shows that page visits not in the large connected components belong to

small clusters, typically singletons, and are thus unlikely to be useful to the adversary.

An adversary’s incomplete view. We must consider that the adversary’s

position on the network may not give them a full view of any user’s traffic. The ad-

versary’s view may be limited due to its policy or geographic restrictions as described

in Section 2.2, however even with these considerations an adversary may not see all

of a user’s traffic. A user may change locations on the network or alternative routes

taken by packets through the network might result in gaps in the adversary’s data

collection. To model the adversary’s partial view of the user’s browsing activity, we

repeat our analysis with random subsets of web pages of various sizes.

For illustration, Figure 7.2a shows how the GCC of a single AOL user’s page

visits (y-axis) grows as we vary the completeness of the adversary’s view of the user’s

HTTP traffic (x-axis). Each data point was computed by taking 50 independently

random samples of page visits. For each sample we apply the clustering algorithm

and compute the fraction contained in the GCC. We then average the fractions across

the 50 samples. Since we wish to simulate these page visits being spread out over

178

time, only cookies with expiration times at least three months into the future were

included when computing the clusters.

0 50 100 150 200
Number of sites

0.0

0.2

0.4

0.6

0.8

1.0
R

a
ti

o
 o

f
G

C
C

 s
iz

e
 t

o
 #

 s
it

e
s

AOL User #3076384

(a) Individual AOL User

0 50 100 150 200
Number of sites

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
 o

f
G

C
C

 s
iz

e
 t

o
 #

 s
it

e
s

Alexa

AOL

(b) Average AOL & Alexa Users

Figure 7.2: Clustering, random subsets of traffic

Thus for each (x, y) pair we can say that if the adversary captures x web page visits

by a user in the course of a wiretap, they could link approximately y% of those visits

into a single cluster. The numbers we see for this user are typical — the fraction is

around 55% for even very small clusters and exceeds 60% as the cluster size increases.

As discussed in Section 7.2, we average all results over N = 25 client instances for all

(client, adversary combinations).

We alternatively examined an adversary who sees subsets of web pages that the

user visited in chronological order (perhaps the adversary only observed the user for

a short period of time). These results had no statistically significant differences from

random subsets. As such, we present the remainder of the graphs using random

subsets.

Unrestricted Adversary — AOL User Profiles We first examine the level of

clustering an adversary can achieve when it is not subject to any policy or geographic

restriction. The results for users simulated under the AOL browsing model and no

blocking tools are included in Figure 7.2b. These results show that the clustering

remains very similar to the single user case of Figure 7.2a, except that no inconsis-

tencies remain. After just 55 web page visits observed by the adversary, the growth

179

of the GCC flattens out to 62.4± 3.2% after 200 sites. For the remaining results, we

will only present values for this asymptotic case of 200 sites, as the shape of the GCC

growth is nearly identical in all cases.

Unrestricted Adversary — Alexa profiles Next we examine the effect of the

browser model on the ability of an unrestricted adversary to cluster user data. We

hold the user location and browser configuration set to browsing within the U.S. with

no blocking settings. Figure 7.2b compares the results for Alexa profiles for U.S. users

against the AOL profiles. The Alexa clustering shows a similar growth pattern with

an offset around 10% higher on average, with an overall level of clustering after two

sites of 72.9± 1%.

We attribute this higher rate of clustering to several factors. First, the creation

of our AOL browsing model biases visited pages towards those that rank high in

search results. In particular, wikipedia.org is consistently in the top 5 results for

many queries, and accounts for about 5% of the sites not in the GCC on average.

Second, search results will return a much more diverse set of sites than the Alexa

model samples from, which may contain sites that include less third-party trackers

(e.g. government sites). In our own data, we see that the top 500 US Alexa sites

include resources from an average of 62 unique hosts, whereas the average for our

AOL profiles is 23.

7.3.2 U.S. Users Under One-End Foreign

We now consider an adversary located within the United States who is constrained

by the “one-end foreign” rule when collecting data on U.S. users. The client model

used in evaluating this adversary is U.S.-based users browsing random subsets of

the Alexa top-500 U.S. sites with no blocking tools. The size of the largest cluster

observed reduces to just 0.9± 0.2% of visited sites averaged across all instances.

180

wikipedia.org

To understand why this occurs, we must look at the composition of HTTP traffic.

For the average user in this (adversary, client) pair, at least one non-U.S. sub-resource

request occurs for 31.7% of the Alexa top-500 sites in the U.S. However, the overall

number of HTTP Requests leaving the United States is comparatively small, account-

ing for just 2.0% of all requests. Only considering traffic where an adversary could

learn the top-level domain through the referrer headers, this reduces to 22.7% of vis-

its and 1.6% of requests.5 Although nearly a quarter of a user’s browsing history

is visible to the adversary, we show that cookie linking is an ineffective method to

cluster this traffic.

7.3.3 Cookie Linking in Non-U.S. Traffic

We now explore the level of clustering that is possible for traffic with a non-U.S.

origin. We examine two different cases in this section: we first show the level of

clustering possible under the assumption that the adversary will see all web requests

that occur for a specific page visit and then we show what an adversary observing

U.S.-bound traffic would see. A key point to note is that even if the majority of

a website’s resources are requested from a local server, embedded third-parties may

cause U.S.-bound requests to occur which have the domain of the first-party as a

referrer.

User Location Unrestricted Adver. US-based Adver.

Japan 59.6± 1.2% 20.9± 0.7%

Ireland 63.8± 1.2% 12.8± 1.1%

Table 7.1: Clustering of non-U.S. users by an adversary with no restrictions vs. one
restricted to U.S. bound traffic.

Unrestricted Adversary — non-U.S. profiles When all requests are consid-

ered, the level of clustering is similar to that of the U.S.-based Alexa user simulations.

Table 7.1 shows amount of clustering that occurs for users in Ireland and Japan under

5These results are broadly consistent with measurements taken in past work [218].

181

the random subset clustering model. Simulated users in Ireland can expect around

63% of traffic to be clustered, while users in Japan can expect nearly 60%. We believe

the differences between user simulations generated using Alexa’s top U.S., Japan, and

Ireland lists arises from the difference in the number of included third parties on the

first party (i.e., 62, 38, and 30 on average, respectively).

U.S. based Adversary — non-U.S. profiles We then restrict the clustering

to only consider requests which are U.S. bound, and cluster based on the information

available to a geographically restricted adversary. This could include an adversary

within the United States, or an adversary sitting at the entrance to undersea cables

returning to the United States. Table 7.1 shows clustering capabilities of an adversary

restricted to these conditions. In Ireland, we see a reduction to around 13% of page

visits and in Japan we see a less severe decrease to 20% of visited sites.

7.3.4 Cookie Linking Under Blocking Tools

We now investigate several ways users may mitigate a clustering attack using blocking

tools available at the time of measurement (June 2014). For all blocking configura-

tions, we make measurements using the AOL browsing model and we examine the

ability of an unrestricted adversary to cluster traffic. Measurements are run using

several different privacy settings within the browser and two popular privacy and

security add-ons.

Baseline displays the level of clustering with no privacy settings or blocking tools

enabled. This represents an upper bound on the level of tracking we would expect to

see under the other configurations.

DNT had a negligible effect on clustering, showing no statistically significant

difference than without blocking.

Cookie blocking policies were more effective, particularly when an adversary saw

a low number of page visits. We blocked cookies for sites that had not been visited

182

Base DNT Some 3P All 3P Ghostery HTTPS-E
0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f G
C

C
 s

iz
e

to
 #

 s
ite

s

Figure 7.3: Clustering under several privacy settings as of June 2014.

in a first-party context by setting “Accept third-party cookies: From visited” in

Firefox (this is also the default in Safari). When set, the level of clustering reduced

to 43.9± 3.2%. Blocking all third-party cookies further reduced this to 30.2± 3.0%.

HTTPS Everywhere is an extension created by the EFF to force HTTPS con-

nections whenever available. Since HTTPS requests are not visible to an attacker,

and HTTP requests from HTTPS origins will not include a referer (preventing the

attacker from linking requests back the the original site). A site can fall into one of

four categories: no support for HTTPS, supported but not the default, supported and

used by default, and finally, HTTPS-only. This measurement provides a picture of

what happens as more sites support and use HTTPS by default. Under our browsing

model, the number of HTTPS requests increased from 12.7% to 34.0% and the level

of clustering was reduced to 46.1± 3.2%.

Ghostery is a popular list-based browser extension for blocking third-party re-

quests to domains considered to be trackers. This proved to be the most effective

solution for users, reducing the level of clustering to 24.2± 2.8% of visited sites. En-

abling Ghostery and configuring it to block as much as possible reduced the average

number of inclusions from external hosts to just 5.2 per first-party.

183

7.3.5 Identity Leakage

Table 7.2 summarizes our results from a manual survey of the Alexa U.S. sites. We

picked the top 50 sites that supported account creation at the time of analysis (June

2014). 44 of the 50 websites used HTTPS to secure login pages.6 Only 19 of those sites

continued to use HTTPS to secure future interactions with the user after logged in.

We summarize the cleartext identity leaks for the websites which no longer continue

to use HTTPS after login.

Although a majority of sites secured user credentials on login pages, personally

identifying information (name, username, email address) was transmitted much more

frequently via HTTP. Over half of the surveyed sites leaked at least one type of

identifier, and 42% (not shown in table) leaked either username or email address,

which can be used to uniquely infer the user’s real-world identity. Past work [183,210]

has found a roughly equivalent level of leakage to occur through the Request-URI and

Referer headers.

Plaintext Leak Type Percentage of Sites

First Name 28%

Full Name 14%

Username 36%

Email Address 18%

At least one of the above 56%

Table 7.2: Leakage on Alexa Top 50 supporting user accounts as of June 2014

Furthermore, we verified that pages from these popular sites that leaked identity

occurred in the clusters of web pages found in our attack. Specifically, at least 5

(and an average 9.92) of the 28 sites we found to leak some type of identity were

found in the giant connected component of every one of the 25 Alexa U.S. users.

Due to global popularity of the top-50 U.S. sites, an average of 4.4 and 6.4 of these

identity leaking sites were found in the GCC’s of the Alexa Japan and Alexa Ireland

65 of the remaining 6 made POSTs with credentials and 1 made a GET with the credentials as
a URL query parameter

184

users, respectively. Additionally, for the AOL profiles with no blocking, 9 of the 25

simulated users had at least 1 identity leaker in the GCC. Of course, there are likely

also many sites outside the top 50 that leak identity and are found in these clusters,

but we did not measure these.

Taken together with our results on clustering, our measurements show that a

passive attack is highly feasible: after observing only a fraction of a user’s web traffic

the adversary will be able to link the majority of the user’s web requests together and

furthermore, use the contents of the responses to infer the user’s real-world identity.

7.4 Third parties impede HTTPS adoption

In the time since we made our measurements in 2014, browser vendors [52, 283],

standards bodies [126, 247], and industry advocacy groups [113] have pushed for the

adoption of HTTPS by default on the web. These efforts have included the creation

of Let’s Encrypt7, a certificate authority which provides free TLS certificates. As a

result, the web has seen an explosion of HTTPS adoption; Google’s Transparency

Report8 shows that, within the United States, HTTPS page loads in the Chrome

browser have risen from 44% of page loads in March 2015 to 81% in April 2018. The

rise of HTTPS adoption will lessen the ability of a network adversary to perform the

attacks described in this chapter.

In this section, we explore some of the remaining roadblocks to HTTPS adoption.

One major roadblock identified by Publishers is the need to move all embedded third

parties and trackers to HTTPS to avoid mixed-content errors [309, 331]. In January

2016 we examined HTTPS adoption on the top sites and found that trackers do

indeed impede adoption. Specifically, we used the “Default Stateless” and “HTTPS

Everywhere” measurement configurations described in Table 4.1.

7https://letsencrypt.org/
8https://transparencyreport.google.com/https/overview

185

https://letsencrypt.org/
https://transparencyreport.google.com/https/overview

Firefox 47

Chrome 47

HTTPS HTTP
HTTPS w\ Passive

Mixed Content

Figure 7.4: Secure connection UI for Firefox Nightly 47 and Chrome 47. Clicking
on the lock icon in Firefox reveals the text “Connection is not secure” when mixed
content is present.

55K Sites 1M Sites

HTTP Only 82.9% X
HTTPS Only 14.2% 8.6%
HTTPS Opt. 2.9% X

Table 7.3: First party HTTPS support on the top 55K and top 1M sites. “HTTP
Only” is defined as sites which fail to upgrade when HTTPS Everywhere is enabled.
‘HTTPS Only” are sites which always redirect to HTTPS. “HTTPS Optional” are
sites which provide an option to upgrade, but only do so when HTTPS Everywhere
is enabled. We carried out HTTPS-everywhere-enabled measurement for only 55,000
sites, hence the X’s.

Table 7.3 shows the number of first-party sites that support HTTPS and the

number that are HTTPS-only. At the time of measurement, the Google Transparency

Report lists that 51% of Chrome page loads within the US used HTTPS. Despite this,

our results reveal that HTTPS adoption by sites remained rather low.

Mixed-content errors occur when HTTP sub-resources are loaded on a secure site.

This poses a security problem, leading to browsers to block the resource load or warn

the user depending on the content loaded [237]. Passive mixed content, that is, non-

executable resources loaded over HTTP, cause the browser to display an insecure

warning to the user but still load the content. Active mixed content is a far more

serious security vulnerability and is blocked outright by modern browsers; it is not

reflected in our measurements.

Third-party support for HTTPS. To test the hypothesis that third parties

impede HTTPS adoption, we first characterize the HTTPS support of each third

party. If a third party appears on at least 10 sites and is loaded over HTTPS on all

186

HTTPS Support Percent
Prominence
weighted %

HTTP Only 54% 5%
HTTPS Only 5% 1%
Both 41% 94%

Table 7.4: Third party HTTPS support. “HTTP Only” is defined as domains from
which resources are only requested over HTTP across all sites on our 1M site mea-
surement. ‘HTTPS Only” are domains from which resources are only requested over
HTTPS. “Both” are domains which have resources requested over both HTTP and
HTTPS. Results are limited to third parties embedded on at least 10 first-party sites.

of them, we say that it is HTTPS-only. If it is loaded over HTTPS on some but not

all of the sites, we say that it supports HTTPS. If it is loaded over HTTP on all of

them, we say that it is HTTP-only. If it appears on less than 10 sites, we do not have

enough confidence to make a determination.

Table 7.4 summarizes the HTTPS support of third party domains. A large num-

ber of third-party domains are HTTP-only (54%). However, when we weight third

parties by prominence, only 5% are HTTP-only. In contrast, 94% of prominence-

weighted third parties support both HTTP and HTTPS. This supports our thesis

that consolidation of the third-party ecosystem is a plus for security and privacy.

Impact of third-parties. We find that a significant fraction of HTTP-default

sites (26%) embed resources from third-parties which do not support HTTPS. These

sites would be unable to upgrade to HTTPS without browsers displaying mixed con-

tent errors to their users, the majority of which (92%) would contain active content

which would be blocked.

Similarly, of the approximately 78,000 first-party sites that are HTTPS-only,

around 6,000 (7.75%) load with mixed passive content warnings. However, only 11%

of these warnings (around 650) are caused by HTTP-only third parties, suggesting

that many domains may be able to mitigate these warnings by ensuring all resources

are being loaded over HTTPS when available. We examined the causes of mixed

187

Class
Top 1M

% FP
Top 55k
% FP

Own 25.4% 24.9%
Favicon 2.1% 2.6%
Tracking 10.4% 20.1%
CDN 1.6% 2.6%
Non-tracking 44.9% 35.4%
Multiple causes 15.6% 6.3%

Table 7.5: A breakdown of causes of passive mixed-content warnings on the top 1M
sites and on the top 55k sites. “Non-tracking” represents third-party content not
classified as a tracker or a CDN.

content on these sites, summarized in Table 7.5. The majority are caused by third

parties, rather than the site’s own content, with a surprising 27% caused solely by

trackers. Additional details on the method we used to determine which resources led

to mixed content warnings is given in Section A.6 in the Appendix.

7.5 Discussion

7.5.1 Extending the attack: linking without IP address

So far we have assumed that the adversary sees the same source IP address on a

request to a first-party site and its corresponding third-party tracker, and that this

can be used to link the two requests. There are at least two scenarios in which this

assumption is problematic. The first is a NAT. If two users, Alice and Bob, behind

the same NAT visit the same web page at roughly the same time, the adversary sees

the same IP address on all ensuing HTTP requests. The other scenario is when the

user employs Tor without proper application layer anonymization, and the adversary

is able to sniff cookies only on the path from the exit node to the web server. (If

the user is using a properly configured Tor setup, such as the Tor browser bundle,

this attack does not work at all). Since Tor will, in general, use different circuits for

188

communicating with different servers, the adversary will see different source IPs for

the two requests (or may be able to observe only one of the requests).

However the well-known “intersection attack” can be used to link requests without

using the IP address: if a cookie value a associated with page A’s domain and a cookie

value x associated with an embedded tracker domain X are observed multiple times

near-simultaneously (e.g. within 1 second of each other), then a and x are probably

associated with the same user. Intuition suggests that for all but the busiest of web

pages, two or three visits may be sufficient to link the first-party and tracker cookies

with each other. However, this claim cannot be rigorously evaluated without access

to large-scale HTTP traffic and so we leave this as a hypothesis.

7.5.2 Limitations

A couple of important limitations of the attack must be pointed out. First, using

the Tor browser bundle likely defeats it. “Cross-origin identifier unlinkability” is

a first-order design goal of the Tor browser, which is achieved through a variety

of mechanisms such as double-keying cookies by first-party and third-party [270]. In

other words, the same tracker on different websites will see different cookies. However,

our measurements on identifier leakage on popular websites apply to Tor browser

usage as well. Preventing such leakage is not a Tor browser design goal.

Simply disabling third-party cookies will also deter the attack, but it is not clear

if it will completely stop it. There are a variety of stateful tracking mechanisms

in addition to cookies [76, 152, 220, 347] and some tracking identifiers are based on

content user identity (Chapter 6), although most are not as prevalent on the web as

cookies are.

We also mention two limitations of our study. First, while a significant fraction

of popular sites transmitted identities of logged-in users in the clear, we have not

actually measured how frequently typical users are logged in to the sites that do

189

so. Anecdotal evidence suggests that this number must be high, but experiments on

actual user sessions are required for an accurate estimation of vulnerability.

Second, while we take pains to model the adversary’s view of our simulated users’

traffic as if it were spread out over a 2-3 month period (as the searches in the AOL

logs were), our actual crawls were conducted over a short time span (10 seconds

between visits). There is one way in which our results might differ if our crawls were

spread out: cookies might list expiry times well into the future, but servers might

expire them ahead of schedule. To check that this would not be the case, we utilized

the independent cookie measurement database Cookiepedia.9 For a sample of cookies

in our dataset with long expiry times, we manually verified that they are actually

long-lived as measured in the wild by Cookiepedia.

Second, we use commercial geolocation data with an additional custom metric to

determine if requests enter the United States for users in Japan and Ireland, and to

determine if requests leave the United States for users within the U.S. Even with this

additional check, two scenarios can occur: requests outside the U.S. can be marked

as entering the U.S. due to an incorrect geolocation and high network latency, and

requests inside the U.S. can be marked as staying in the U.S. if they are incorrectly

geolocated as being further away than the actual location of the destination (which

may still be external to the U.S.).

7.6 Summary

While much has been said from a legal, ethical and policy standpoint about the revela-

tions of NSA tracking, many interesting technical questions deserve to be considered.

In this chapter we studied what can be inferred from the surveillance of web traffic

and established that utilizing third-party tracking cookies enables an adversary to

attribute traffic to users much more effectively than methods such as considering IP

9http://cookiepedia.co.uk/

190

http://cookiepedia.co.uk/

address alone. We also showed that the main defense against network surveillance,

i.e., the adoption of HTTPS on all websites, is slowed by the lack of HTTPS support

by third-party services and web trackers.

Our findings provide support for recent efforts by browser vendors to restrict new

APIs, particularly those that can be used for tracking, to “secure contexts” [167,322].

By validating the surveillance risks of HTTP tracking cookies, we hope that our

work contributes to browser vendor discussions around deprecating HTTP cookies

completely [336].

191

Chapter 8

Conclusion

This dissertation has shown that web tracking is sophisticated and pervasive. We

showed that stateful tracking is present on nearly every website in the Alexa top

1 million sites, and is dominated by a small number of large companies. At the

same time, we discovered smaller third parties using persistent tracking techniques

that completely lack user control. These parties have an outsized impact on a user’s

privacy when compared to their presence on the web; identifier sharing through cookie

syncing has the potential to inject persistent tracking information into the data used

by major data brokers and advertisers. Indeed, we observed numerous instances of

small parties sharing identifiers based on email addresses with major data brokers

and web trackers.

Our work shows that even those users who take extreme steps to protect their

privacy—by blocking trackers, disabling third-party cookies, or even using a browser

that mitigates device fingerprinting—will still be exposed to web tracking of some

form. Ultimately, there are few technical options to prevent the collection of personal

information for the purposes of tracking, particularly if the first-party website is

complicit. The injection of personal information into the web tracking identifier

192

graph has made it possible for companies to track across devices [65] and combine

online tracking data with offline data sources.

Web privacy measurement has the potential to play a key role in keeping online

privacy incursions and power imbalances in check. To achieve this potential, mea-

surement tools must be made available broadly rather than just within the research

community. In this dissertation, we’ve tried to bring this ambitious goal closer to

reality. We have already seen an impact from our contributions. The research dis-

coveries presented in this dissertation have led to number of privacy improvements in

web browsers and web standards, including:

• The addition of an option to disable the Web Audio API in Firefox [71], which

was later used for fingerprinting protection in the Tor Browser [269].

• The prioritization of fingerprinting protection features in the Brave browser, in

particular to decision to defend against WebRTC fingerprinting [349].

• The removal of the Battery Status API from several browser engines, in part

because of our discovery of abuse in the wild [87,136].

• Enhancing the Disconnect and EasyPrivacy tracking protection lists. The added

URLs include scripts which fingerprint [106], provide session replay services

[80,230], and those which abuse browser login managers [206].

• Safari [161] and Brave [310] disabled browser credential autofill without user

form interaction following our discovery of abuse. Chrome changed their user-

name autofill to require user interaction with the page [90]. Firefox is also

considering restricting autofill [67].

• The addition of a fingerprinting considerations section to the Web Audio API

specification [34].

193

In addition, our work has been used to inform policy makers, regulators, and advo-

cacy groups. Researchers at the Federal Trade Commission (FTC) used OpenWPM

in their cross-device tracking research [65]. Our work has also been used to brief the

Federal Communication Commission (FCC) on the need for broadband privacy [243],

to inform privacy professionals on the risks of session replay analytics scripts [146],

and to argue for HTTPS adoption [149].

There have been promising developments by browser vendors and standards bodies

in recognizing the need to address web tracking. Since 2017, Apple has shipped

several privacy features aimed at reducing web tracking [133,339]. During that time,

Mozilla upstreamed and improved patches from the Tor Browser, which make it

possible to enable fingerprint resistance in Firefox [233]. Recent specifications are

starting to include text that directly addresses fingerprinting concerns early on in the

design process—examples include the Media Capabilities API [188] and the Gamepad

API [145].

Future work

We identify a number of possible directions for future work.

Automated detection of trackers with machine learning. In this dissertation we

found that tracking protection lists continually missed trackers. Our methods are

often semi-automated; a small set of “candidate” trackers are detected using auto-

mated methods, and then a human expert narrows down the candidate set to a set of

known trackers. A promising direction is to use measurement and machine learning

to automatically detect and classify trackers. If successful, this will greatly improve

the effectiveness of browser privacy tools. Today such tools use tracking-protection

lists that need to be created manually and laboriously, and suffer from significant

false positives as well as false negatives. Our large-scale data provide the ideal source

of ground truth for training classifiers to detect and categorize trackers.

194

Mitigate tracking within the browser. Browsers currently enforce a limited number

of restrictions on advertisers and web trackers. Instead, browsers can take a number

of steps to make tracking more difficult and more transparent to the user:

• Choose more private defaults. With the exception of Safari [339], most of the

major browsers have permissive defaults that do little to block tracking. Other

browser vendors could move to default cookie policies that restrict storage access

for third parties. Likewise, browsers can restrict APIs that are known to be

abused by trackers, as was done for the Battery Status API (Section 5.2).

• Implement features to better restrict tracking scripts. All browsers currently

rely on the first party to restrict trackers by embedding them in iframes or by

using a Javascript sandboxing method [321]. Unfortunately, these features are

not commonly used by first parties. Browser vendors can explore options for

placing advertisers and tracking domains in sandboxed environments without

the cooperation of the first-party website. Current proposals include adFrame

[164] and Frozen Realms [307].

• Provide tracking indicators. Security indicators are common in browsers, and

include things like the green padlock on the URL bar or TLS error pages when

certificate validation fails. Chrome will display negative security indicators on

HTTP connections starting July 2018 as a way to encourage HTTPS adop-

tion [284]. Browsers have the opportunity to take a similar approach for web

tracking. Many privacy addons already provide simple indicators of tracking,

in the form of counts of the number of trackers (e.g., the Disconnect or uBlock

Origin browser extensions) or as a letter grade (e.g., DuckDuckGo’s Privacy

Essentials browser extension). Other options include warning developers when

trackers are present on pages with sensitive information, like a login box, or

when trackers use invasive tracking techniques.

195

Automated measurement of tracking across desktop, mobile, and Internet of Things

(IoT) devices. This dissertation has focused on automated measurement of trackers

on the web, with a focus on desktop browses. While our methods naturally extend

to web browsers on mobile devices, new methods and tools are needed to measure

tracking in mobile applications and IoT devices. Several research groups have made

process measuring tracking in mobile application [275, 291, 348], but IoT tracking

measurement remains an area of future work.

Both this dissertation (Chapter 6) and past work [65] have found that a number

of trackers collect enough personal information on the web seemingly for cross-device

tracking. Likewise, preliminary measurements of cross-device tracking show that

many of the same trackers are present on desktop and mobile devices [275]. We posit

that the same is true for IoT devices [153]. Research which examines tracking across

all three classes of devices is gravely needed to fully understand the extent of data

collection by tracking companies.

The publisher’s perspective. The publisher’s perspective is often missing from web

tracking measurement work. It would be helpful to better understand the relationship

between publishers and the scripts they embed. Do publishers have an option for

privacy protecting advertising and analytics? The failure of many sites to adapt

to the recent EU General Data Protection Regulation (GDPR) [92] suggests that

options are limited and difficult to deploy [274]. Likewise, it would be helpful to

better understand the relationship between email senders and mailing list managers.

To what extent is email tracking driven by senders versus mailing list managers?

When a sender sets up a marketing campaign with a mailing list manager, is the

tracking disclosed to the sender?

196

Summary

We have shown that web tracking is pervasive and increasing in persistence thanks

to improved browser and web technologies. This may seem to paint a bleak picture

that user tracking is unavoidable, however we find several promising signs that this is

not the case. The transparency brought on by web measurement is an effective deter-

rent to web tracking, though measurement must happen regularly for the impact to

last. Browser vendors and web standards bodies are starting to take an active role in

mitigating web tracking, and have been responsive to measurement results. Likewise,

we have seen sweeping privacy reform through the European Union’s General Data

Protection Regulation (GDPR). We are hopeful that automated tracking measure-

ment will continue to provide transparency into new privacy-invasive practices, and

that browser vendors, regulators, and policy makers will choose to stand on the side

of protecting users.

197

Appendix A

Appendix

A.1 Landing page detection from HTTP data

Upon visiting a site, the browser may either be redirected by a response header (with a

3XX HTTP response code or “Refresh” field), or by the page content (with javascript

or a “Refresh” meta tag). Several redirects may occur before the site arrives at its

final landing page and begins to load the remainder of the content. To capture all

possible redirects we use the following recursive algorithm, starting with the initial

request to the top-level site. For each request:

1. If HTTP redirect, following it preserving referrer details from previous request.

2. If the previous referrer is the same as the current we assume content has started

to load and return the current referrer as the landing page.

3. If the current referrer is different from the previous referrer, and the previous

referrer is seen in future requests, assume it is the actual landing page and

return the previous referrer.

4. Otherwise, continue to the next request, updating the current and previous

referrer.

198

This algorithm has two failure states: (1) a site redirects, loads additional re-

sources, then redirects again, or (2) the site has no additional requests with referrers.

The first failure mode will not be detected, but the second will be. From manual

inspection, the first failure mode happens very infrequently. For example, we find

that only 0.05% of sites are incorrectly marked as having HTTPS as a result of this

failure mode. For the second failure mode, we find that we can’t correctly label the

landing pages of 2973 first-party sites (0.32%) on the top 1 million sites. For these

sites we fall back to the requested top-level URL.

A.2 Leak detection: encodings and hashes

Supported hashes and checksums: md2, md4, md5, sha, sha1, sha256, sha224,

sha384, sha3-224, sha3-256, sha3-384, sha3-512, murmurhash2 (signed and unsigned),

murmurhash3 32-bit, murmurhash3 64-bit, murmurhash3 128-bit, ripemd160,

whirlpool, blake2b, blake2s, crc32, adler32

Supported encodings: base16, base32, base58, base64, urlencoding, deflate,

gzip, zlib, entity, yenc

199

A.3 List of HTTP Respawning Scripts

First-Party Domains Source of Respawn Script Source

accountonline.com

(citi.com), fling.com*,

flirt4free.com, zoosk.com

Third-party: Iovation Fraud

Detection

https://mpsnare.iesnare.

com/snare.jshttps://mpsnare.

iesnare.com/stmgwb2.swf

seoprofiler.com, seo-

book.com, bigrock.in,

imperiaonline.org, me-

diatemple.net, reseller-

club.com

First-party: Post Affiliate Pro

Software

http://seobook.com/aff/scripts/

trackjs.js

twitch.tv, justin.tv Third-party: Shared CDN http://www-cdn.jtvnw.

net/assets/global-

6e555e3e646ba25fd387852cd97c19e1.

js

casino.com First-party: Unknown/In-

house

http://www.casino.com/shared/

js/mts.tracker.js

xlovecam.com First-party: Unknown/In-

house

http://www.xlovecam.com/

colormaker.js

Table A.1: Summary of HTTP respawning as of May 2014. “Source of Respawn”
describes whether or not the tracking occurred in the first-party or third-party context
and lists the entity responsible for the script. * Interestingly fling.com had the ID
passed from the third-party context and saved in the first-party context

A.4 Fingerprinting script lists

200

https://mpsnare.iesnare.com/snare.js https://mpsnare.iesnare.com/stmgwb2.swf
https://mpsnare.iesnare.com/snare.js https://mpsnare.iesnare.com/stmgwb2.swf
https://mpsnare.iesnare.com/snare.js https://mpsnare.iesnare.com/stmgwb2.swf
http://seobook.com/aff/scripts/trackjs.js
http://seobook.com/aff/scripts/trackjs.js
http://www-cdn.jtvnw.net/assets/global-6e555e3e646ba25fd387852cd97c19e1.js
http://www-cdn.jtvnw.net/assets/global-6e555e3e646ba25fd387852cd97c19e1.js
http://www-cdn.jtvnw.net/assets/global-6e555e3e646ba25fd387852cd97c19e1.js
http://www-cdn.jtvnw.net/assets/global-6e555e3e646ba25fd387852cd97c19e1.js
http://www.casino.com/shared/js/mts.tracker.js
http://www.casino.com/shared/js/mts.tracker.js
http://www.xlovecam.com/colormaker.js
http://www.xlovecam.com/colormaker.js

Fingerprinting script # of sites

ct1.addthis.com/static/r07/core130.js 5282
i.ligatus.com/script/fingerprint.min.js 115
src.kitcode.net/fp2.js 68
admicro1.vcmedia.vn/fingerprint/figp.js 31
amazonaws.com/af-bdaz/bquery.js 26
*.shorte.st/js/packed/smeadvert-intermediate-ad.js 14
stat.ringier.cz/js/fingerprint.min.js 4
cya2.net/js/STAT/89946.js 3
images.revtrax.com/RevTrax/js/fp/fp.min.jsp 3
pof.com 2
*.rackcdn.com/mongoose.fp.js 2
9 others 9

TOTAL 55591

Table A.2: Canvas fingerprinting scripts found during a May 2014 measurement of
the top 100,000 Alexa sites.
*: Some URLs are truncated or omitted for brevity.
1: There were a total of 5,542 unique sites. Some sites included canvas fingerprinting
scripts from more than one domain.

201

ct1.addthis.com/static/r07/core130.js
i.ligatus.com/script/fingerprint.min.js
src.kitcode.net/fp2.js
admicro1.vcmedia.vn/fingerprint/figp.js
amazonaws.com/af-bdaz/bquery.js
*.shorte.st/js/packed/smeadvert-intermediate-ad.js
stat.ringier.cz/js/fingerprint.min.js
cya2.net/js/STAT/89946.js
images.revtrax.com/RevTrax/js/fp/fp.min.jsp
pof.com
*.rackcdn.com/mongoose.fp.js

Fingerprinting Script # of sites

cdn.doubleverify.com/dvtp_src_internal24.js 4588
cdn.doubleverify.com/dvtp_src_internal23.js 2963
ap.lijit.com/sync 2653
cdn.doubleverify.com/dvbs_src.js 2093
rtbcdn.doubleverify.com/bsredirect5.js 1208
g.alicdn.com/alilog/mlog/aplus_v2.js 894
static.audienceinsights.net/t.js 498
static.boo-box.com/javascripts/embed.js 303
admicro1.vcmedia.vn/core/fipmin.js 180
c.imedia.cz/js/script.js 173
ap.lijit.com/www/delivery/fp 140
www.lijit.com/delivery/fp 127
s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js 118
d38nbbai6u794i.cloudfront.net/*/platform.min.js 97
voken.eyereturn.com/ 85
p8h7t6p2.map2.ssl.hwcdn.net/fp/Scripts/PixelBundle.js 72
static.fraudmetrix.cn/fm.js 71
e.e701.net/cpc/js/common.js 56
tags.bkrtx.com/js/bk-coretag.js 56
dtt617kogtcso.cloudfront.net/sauce.min.js 55
685 others 1853
TOTAL 182831

Table A.3: Canvas fingerprinting scripts found during a January 2016 measurement
of the Alexa top 1 million sites.
*: Some URLs are truncated for brevity.
1: There were a total of 14,371 unique sites. Some sites include fingerprinting scripts
from more than one domain.

202

cdn.doubleverify.com/dvtp_src_internal24.js
cdn.doubleverify.com/dvtp_src_internal23.js
ap.lijit.com/sync
cdn.doubleverify.com/dvbs_src.js
rtbcdn.doubleverify.com/bsredirect5.js
g.alicdn.com/alilog/mlog/aplus_v2.js
static.audienceinsights.net/t.js
static.boo-box.com/javascripts/embed.js
admicro1.vcmedia.vn/core/fipmin.js
c.imedia.cz/js/script.js
ap.lijit.com/www/delivery/fp
www.lijit.com/delivery/fp
s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js
d38nbbai6u794i.cloudfront.net/*/platform.min.js
voken.eyereturn.com/
p8h7t6p2.map2.ssl.hwcdn.net/fp/Scripts/PixelBundle.js
static.fraudmetrix.cn/fm.js
e.e701.net/cpc/js/common.js
tags.bkrtx.com/js/bk-coretag.js
dtt617kogtcso.cloudfront.net/sauce.min.js

Fingerprinting Script # of sites Classification

cdn.augur.io/augur.min.js 147 Tracking
click.sabavision.com/*/jsEngine.js 115 Tracking
static.fraudmetrix.cn/fm.js 72 Tracking
*.hwcdn.net/fp/Scripts/PixelBundle.js 72 Tracking
www.cdn-net.com/cc.js 45 Tracking
scripts.poll-maker.com/3012/scpolls.js 45 Tracking
static-hw.xvideos.com/vote/displayFlash.js 31 Non-Tracking
g.alicdn.com/security/umscript/3.0.11/um.js 27 Tracking
load.instinctiveads.com/s/js/afp.js 16 Tracking
cdn4.forter.com/script.js 15 Tracking
socauth.privatbank.ua/cp/handler.html 14 Tracking
retailautomata.com/ralib/magento/raa.js 6 Unknown
live.activeconversion.com/ac.js 6 Tracking
olui2.fs.ml.com/publish/ClientLoginUI/HTML/cc.js 3 Tracking
cdn.geocomply.com/101/gc-html5.js 3 Tracking
retailautomata.com/ralib/shopifynew/raa.js 2 Unknown
2nyan.org/animal/ 2 Unknown
pixel.infernotions.com/pixel/ 2 Tracking
167.88.10.122/ralib/magento/raa.js 2 Unknown
80 others present on a single first-party 80 -
TOTAL 705 -

Table A.4: WebRTC Local IP discovery on the Top Alexa 1 Million sites as measured
in January 2016.
*: Some URLs are truncated for brevity.

203

cdn.augur.io/augur.min.js
click.sabavision.com/*/jsEngine.js
static.fraudmetrix.cn/fm.js
*.hwcdn.net/fp/Scripts/PixelBundle.js
www.cdn-net.com/cc.js
scripts.poll-maker.com/3012/scpolls.js
static-hw.xvideos.com/vote/displayFlash.js
g.alicdn.com/security/umscript/3.0.11/um.js
load.instinctiveads.com/s/js/afp.js
cdn4.forter.com/script.js
socauth.privatbank.ua/cp/handler.html
retailautomata.com/ralib/magento/raa.js
live.activeconversion.com/ac.js
olui2.fs.ml.com/publish/ClientLoginUI/HTML/cc.js
cdn.geocomply.com/101/gc-html5.js
retailautomata.com/ralib/shopifynew/raa.js
2nyan.org/animal/
pixel.infernotions.com/pixel/
167.88.10.122/ralib/magento/raa.js

A.5 OpenWPM mailing list form discovery method

This section provides additional detail on our mailing list detection methods used in

Section 6.1.1.

Choosing pages on which to search for forms. OpenWPM searches through

all links (<a> tags) on the landing page to find pages that are most likely to contain

a mailing list form. It does this by matching the link text and URL against a ranked

list of terms, which are shown in Table 6.1 in Section 6.1.1. As an initial step, we

filter out invisible links and links to external sites. We check that the link text does

not contain words in our blacklist, which aims to avoid unsubscribe pages and phone-

based registration. If we have found any links that match, the crawler clicks on the

one with the highest rank, then runs the form-finding procedure on the new page and

any newly opened pop-up windows. If no forms are found, it goes back and repeats

this process for the remaining links. The reason for clicking on generic article links is

that we have come across several news sites with newsletter forms only within article

pages. We also make sure to select the English language or US/English locale when

available, since our keywords are in English.

Top-down form detection. For each page OpenWPM visits, it first searches

through the HTML DOM for any potential email registration forms. When sites use

the standard <form> element, it can simply iterate through each form’s input fields

(<input> tags) and see if any text fields ask for an email address (by matching on

input type and keywords). If so, it marks the form as a candidate, and then chooses

the best candidate using the following criteria (in order):

1. Always return the topmost form. Any form stacked on top of other elements

is probably a modal or dialog, and we find that the most common use of these

components is to promote a site’s mailing lists. We rely on the z-index CSS

property, which specifies the stacking order of an element in relation to others

204

(as a relative, arbitrary integer). Note that most DOM elements take the default

z-index value of auto, inheriting the actual value from its parent; thus, the

crawler recursively checks a form’s parent elements until it finds a non-auto

value, or reaches the root of the DOM tree. To break ties, it also searches for

the literal strings “modal” or “dialog” within the form’s HTML, since we find

that such components are usually descriptively named.

2. Rank login forms lower. This is the other class of forms that often asks for an

email address, so the crawler explicitly checks for the strings “login”, “log in”,

and “sign in” within a form’s HTML to avoid these when other candidates are

present.

3. Prefer forms with more input fields. This is mainly helpful for identifying the

correct follow-up form: if we submit our email address in the footer of a page,

the same footer might be present on the page we get redirected to. In this

scenario, the form we want to pick is the longer one.

Additionally, registration forms are sometimes found inside of inline frames

(<iframe> tag), which are effectively separate HTML pages embedded in the main

page. If necessary, we iterate through each frame and apply the same procedure to

locate registration forms within them.

Bottom-up form detection. A growing number of sites place logical forms

inside of generic container elements (e.g., <div> or tags), without using any

<form> tags. Therefore if top-down form detection fails, we take a bottom-up ap-

proach: the crawler first iterates through all the <input> elements on the page to

check if any email address fields exist at all, then recursively examines their parents to

find the first container that also contains a submit button. This container is usually

the smallest logical form unit that includes all of the relevant input fields.

205

Determining form field type. Once a form is discovered, we need to determine

which fields are contained in the form and fill each field with valid data. We skip any

invisible elements, since a real user would not be expected to fill them. Some fields can

be identified by their type attribute alone—for example, tel for phone numbers and

email for email addresses—but these specific types were introduced in the relatively

recent HTML5 standard [327], and most websites still use the general text type for

all text inputs. In our survey of the top sites, we found that contextual hints are

scattered across many tag attributes, with the most frequent being name, class, id,

placeholder, value, for, and title. In addition, tags that contain HTML bodies

(such as <button> tags) often contain hints in the innerHTML.

Handling two-part form submissions After submitting a form, we are some-

times prompted to fill out another longer form before the registration is accepted.

This second form might appear on the same page (i.e., using JavaScript), or on a

separate page either through a redirect or as a pop-up window. We take a simplistic

approach: the crawler waits a few seconds, then applies the same form-finding proce-

dure first on any pop-up windows and then on the original window. This approach

may have the effect of submitting the same form twice, but we argue that this does

not produce any adverse results—duplicate form submissions are a plausible user

interaction that web services should be expected to handle gracefully.

A.6 Mixed content detection in HTTP data

To classify the cause of mixed content in Section 7.4, we used the following method.

We classify trackers as described in Section 3.2.2. Additionally, we include a list of

CDNs from the WebPagetest Project1. The mixed content URL is then classified

according to the first rule it satisfies in the following list:

1https://github.com/WPO-Foundation/webpagetest

206

https://github.com/WPO-Foundation/webpagetest

1. If the requested domain matches the landing page domain, and the request URL

ends with favicon.ico classify as a “favicon”.

2. If the requested domain matches the landing page domain, classify as the site’s

“own content”.

3. If the requested domain is marked as “should block” by the blocklists, classify

as “tracker”.

4. If the requested domain is in the CDN list, classify as “CDN”.

5. Otherwise, classify as “non-tracking” third-party content.

A.7 Content types for resources which caused

mixed content errors.

207

Content-Type Count

binary/octet-stream 8
image/jpeg 12664
image/svg+xml 177
image/x-icon 150
image/png 7697
image/vnd.microsoft.icon 41
text/xml 1
audio/wav 1
application/json 8
application/pdf 1
application/x-www-form-urlencoded 8
application/unknown 5
audio/ogg 4
image/gif 2905
video/webm 20
application/xml 30
image/bmp 2
audio/mpeg 1
application/x-javascript 1
application/octet-stream 225
image/webp 1
text/plain 91
text/javascript 3
text/html 7225
video/ogg 1
image/* 23
video/mp4 19
image/pjpeg 2
image/small 1
image/x-png 2

Table A.5: Counts of responses with given Content-Type which cause mixed content
errors. NOTE: Mixed content blocking occurs based on the tag of the initial request
(e.g. image src tags are considered passive content), not the response Content-Type.
Thus it is likely that the Javascript and other active content loads listed above are
the result of misconfigurations and mistakes that will be dropped by the browser. For
example, requesting a Javascript file with an image tag.

A.8 Scripts exfiltrating information from browser

login managers.

208

Figure A.1: Code snippets from OnAudience (left) and Adthink (right) that were
responsible for the injection of invisible login forms.

209

Bibliography

[1] Adblock Plus - Surf the web without annoying ads! https://adblockplus.

org/. Online; accessed 2017-09-05.

[2] BeautifulSoup. https://www.crummy.com/software/BeautifulSoup/. On-
line; accessed 2017-09-05.

[3] BlockListParser. https://github.com/shivamagarwal-iitb/

BlockListParser. Online; accessed 2017-09-05.

[4] The design and implementation of the tor browser [draft]. https://www.

torproject.org/projects/torbrowser/design/. Accessed: 2017-01-25.

[5] EasyList and EasyPrivacy. https://easylist.to/. Online; accessed 2017-09-
05.

[6] Fingerprinting browsers using protocol handlers. https://

itsecuritysolutions.org/2010-03-29_fingerprinting_browsers_using_

protocol_handlers/. Accessed: 2017-01-25.

[7] Panopticlick: How unique - and trackable - is your browser? https:

//panopticlick.eff.org.

[8] ShareMeNot: Protecting against tracking from third-party social media buttons
while still allowing you to use them. https://sharemenot.cs.washington.

edu.

[9] TrackingObserver: A Browser-Based Web Tracking Detection Platform. http:
//trackingobserver.cs.washington.edu.

[10] uBlock Origin - An efficient blocker for Chromium and Firefox. Fast and lean.
https://github.com/gorhill/uBlock/. Online; accessed 2017-09-05.

[11] W3C Technical Report Development Process. https://www.w3.org/2018/

Process-20180201/. Accessed 2018-03-25.

[12] Executive Order 12333–United States intelligence activities. http:

//www.archives.gov/federal-register/codification/executive-order/

12333.html, 1981.

210

https://adblockplus.org/
https://adblockplus.org/
https://www.crummy.com/software/BeautifulSoup/
https://github.com/shivamagarwal-iitb/BlockListParser
https://github.com/shivamagarwal-iitb/BlockListParser
https://www.torproject.org/projects/torbrowser/design/
https://www.torproject.org/projects/torbrowser/design/
https://easylist.to/
https://itsecuritysolutions.org/2010-03-29_fingerprinting_browsers_using_protocol_handlers/
https://itsecuritysolutions.org/2010-03-29_fingerprinting_browsers_using_protocol_handlers/
https://itsecuritysolutions.org/2010-03-29_fingerprinting_browsers_using_protocol_handlers/
https://panopticlick.eff.org
https://panopticlick.eff.org
https://sharemenot.cs.washington.edu
https://sharemenot.cs.washington.edu
http://trackingobserver.cs.washington.edu
http://trackingobserver.cs.washington.edu
https://github.com/gorhill/uBlock/
https://www.w3.org/2018/Process-20180201/
https://www.w3.org/2018/Process-20180201/
http://www.archives.gov/federal-register/codification/executive-order/12333.html
http://www.archives.gov/federal-register/codification/executive-order/12333.html
http://www.archives.gov/federal-register/codification/executive-order/12333.html

[13] Device and Sensors Working Group. http://www.w3.org/2009/dap/, 2009.
Accessed: 15.02.17.

[14] Privacy Interest Group Charter. https://www.w3.org/2011/07/privacy-ig-
charter, 2011.

[15] NSA ‘planned to discredit radicals over web-porn use’. http://www.bbc.co.

uk/news/technology-25118156, November 2013.

[16] CSS Support Guide for Email Clients. Campaign Source, https://

www.campaignmonitor.com/css/ (Archive: https://www.webcitation.org/

6rLLXBX0E), 2014.

[17] Doubleclick ad exchange real-time bidding protocol: Cookie matching.
https://developers.google.com/ad-exchange/rtb/cookie-guide, Febru-
ary 2014.

[18] Issue 507703. Ads using navigator.vibrate. https://bugs.chromium.org/p/

chromium/issues/detail?id=507703, 2015.

[19] Battery Status API. https://www.chromestatus.com/feature/

4537134732017664, 2015.

[20] Chinese planning outline for a social credit system. https://www.wired.

com/beyond-the-beyond/2015/06/chinese-planning-outline-social-

credit-system/, 2015. Accessed: 2018.

[21] Webrtc privacy. https://mozillamediagoddess.org/2015/09/10/webrtc-

privacy/, 12 2015. Accessed: 2017-02-09.

[22] Advanced tor browser fingerprinting. http://jcarlosnorte.com/security/

2016/03/06/advanced-tor-browser-fingerprinting.html, 2016. Accessed:
2017-01-25.

[23] How much do ad-tech vendors screen out cloud-based browsers? https://www.

mezzobit.com/ad-tech-cloud-traffic-fraud/, 2016.

[24] HTML 5.1 W3C Recommendation, 1 November 2016. https://www.w3.org/

TR/html51/browsers.html#top-level-browsing-context, 2016.

[25] Big data meets big brother as china moves to rate its citizens.
https://www.wired.co.uk/article/chinese-government-social-credit-

score-privacy-invasion, 2017. Accessed: 2018.

[26] Zestfinance introduces machine learning platform to underwrite mil-
lennials and other consumers with limited credit history. https:

//www.businesswire.com/news/home/20170214005357/en/ZestFinance-

Introduces-Machine-Learning-Platform-Underwrite-Millennials, 2017.
Accessed: 2018.

211

http://www.w3.org/2009/dap/
https://www.w3.org/2011/07/privacy-ig-charter
https://www.w3.org/2011/07/privacy-ig-charter
http://www.bbc.co.uk/news/technology-25118156
http://www.bbc.co.uk/news/technology-25118156
https://www.campaignmonitor.com/css/
https://www.campaignmonitor.com/css/
https://www.webcitation.org/6rLLXBX0E
https://www.webcitation.org/6rLLXBX0E
https://developers.google.com/ad-exchange/rtb/cookie-guide
https://bugs.chromium.org/p/chromium/issues/detail?id=507703
https://bugs.chromium.org/p/chromium/issues/detail?id=507703
https://www.chromestatus.com/feature/4537134732017664
https://www.chromestatus.com/feature/4537134732017664
https://www.wired.com/beyond-the-beyond/2015/06/chinese-planning-outline-social-credit-system/
https://www.wired.com/beyond-the-beyond/2015/06/chinese-planning-outline-social-credit-system/
https://www.wired.com/beyond-the-beyond/2015/06/chinese-planning-outline-social-credit-system/
https://mozillamediagoddess.org/2015/09/10/webrtc-privacy/
https://mozillamediagoddess.org/2015/09/10/webrtc-privacy/
http://jcarlosnorte.com/security/2016/03/06/advanced-tor-browser-fingerprinting.html
http://jcarlosnorte.com/security/2016/03/06/advanced-tor-browser-fingerprinting.html
https://www.mezzobit.com/ad-tech-cloud-traffic-fraud/
https://www.mezzobit.com/ad-tech-cloud-traffic-fraud/
https://www.w3.org/TR/html51/browsers.html#top-level-browsing-context
https://www.w3.org/TR/html51/browsers.html#top-level-browsing-context
https://www.wired.co.uk/article/chinese-government-social-credit-score-privacy-invasion
https://www.wired.co.uk/article/chinese-government-social-credit-score-privacy-invasion
https://www.businesswire.com/news/home/20170214005357/en/ZestFinance-Introduces-Machine-Learning-Platform-Underwrite-Millennials
https://www.businesswire.com/news/home/20170214005357/en/ZestFinance-Introduces-Machine-Learning-Platform-Underwrite-Millennials
https://www.businesswire.com/news/home/20170214005357/en/ZestFinance-Introduces-Machine-Learning-Platform-Underwrite-Millennials

[27] Revealed: 50 million facebook profiles harvested for cambridge analytica
in major data breach. https://www.theguardian.com/news/2018/mar/17/

cambridge-analytica-facebook-influence-us-election, 2018. Accessed:
2018.

[28] Gunes Acar, Steven Englehardt, and Arvind Narayanan. No bound-
aries for user identities: Web trackers exploit browser login managers.
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-

identities-web-trackers-exploit-browser-login-managers/, 2017.

[29] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. The web never forgets: Persistent tracking mech-
anisms in the wild. In Proceedings of CCS, 2014.

[30] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. FPDetective: dusting the web for fingerprinters.
In Proceedings of CCS. ACM, 2013.

[31] Acxiom. Response letter to U.S. congress inquiry. https://web.archive.

org/web/20130425093308/http:/markey.house.gov/sites/markey.house.

gov/files/documents/Acxiom.pdf, 2012. Accessed: 2018-04-02.

[32] Acxiom. Understanding Acxiom’s marketing products. https://www.acxiom.
com/wp-content/uploads/2013/09/Acxiom-Marketing-Products.pdf,
2013. Accessed: 2018-04-02.

[33] Lada A Adamic and Bernardo A Huberman. Zipf’s law and the internet. Glot-
tometrics, 3(1):143–150, 2002.

[34] Paul Adenot and Raymond Toy. Web Audio API – Editor’s Draft. https:

//webaudio.github.io/web-audio-api/, 2018. Accessed: 2018-06-03.

[35] Adobe. Shared objects. https://help.adobe.com/en_US/as3/dev/

WS5b3ccc516d4fbf351e63e3d118a9b90204-7d80.html.

[36] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. An analysis
of private browsing modes in modern browsers. In Proceedings of the 19th
USENIX Conference on Security, USENIX Security’10, pages 6–6, Berkeley,
CA, USA, 2010. USENIX Association.

[37] Ehsan Akhgari. An overview of online ad fraud. https://ehsanakhgari.org/
blog/2018-03-13/an-overview-of-online-ad-fraud, 2018.

[38] Furkan Alaca and P. C. van Oorschot. Device fingerprinting for augmenting
web authentication: Classification and analysis of methods. In Proceedings of
the 32nd Annual Conference on Computer Security Applications, ACSAC ’16,
pages 289–301, New York, NY, USA, 2016. ACM.

212

https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://web.archive.org/web/20130425093308/http:/markey.house.gov/sites/markey.house.gov/files/documents/Acxiom.pdf
https://web.archive.org/web/20130425093308/http:/markey.house.gov/sites/markey.house.gov/files/documents/Acxiom.pdf
https://web.archive.org/web/20130425093308/http:/markey.house.gov/sites/markey.house.gov/files/documents/Acxiom.pdf
https://www.acxiom.com/wp-content/uploads/2013/09/Acxiom-Marketing-Products.pdf
https://www.acxiom.com/wp-content/uploads/2013/09/Acxiom-Marketing-Products.pdf
https://webaudio.github.io/web-audio-api/
https://webaudio.github.io/web-audio-api/
https://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d80.html
https://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7d80.html
https://ehsanakhgari.org/blog/2018-03-13/an-overview-of-online-ad-fraud
https://ehsanakhgari.org/blog/2018-03-13/an-overview-of-online-ad-fraud

[39] Hoofnagle C Altaweel I, Good N. Web privacy census. Technology Science,
2015.

[40] Amelia Andersdotter and Anders Jensen-Urstad. Evaluating websites and their
adherence to data protection principles: Tools and experiences. In IFIP In-
ternational Summer School on Privacy and Identity Management, pages 39–51.
Springer, 2016.

[41] Julia Angwin. Meet the Online Tracking Device That is Virtually Impos-
sible to Block. https://www.propublica.org/article/meet-the-online-

tracking-device-that-is-virtually-impossible-to-block, 2014.

[42] Julia Angwin. Why online tracking is getting creepier. ProPublica, Jun 2014.

[43] Julia Angwin, Surya Mattu, and Terry Parris Jr. Facebook Doesnt Tell Users
Everything It Really Knows About Them. https://www.propublica.org/

article/facebook-doesnt-tell-users-everything-it-really-knows-

about-them, 2016.

[44] Apple. About the security content of Safari 11.1. https://support.apple.

com/en-us/HT208695.

[45] Axel Arnbak and Sharon Goldberg. Loopholes for circumventing the constitu-
tion: Warrantless bulk surveillance on americans by collecting network traffic
abroad, 2014.

[46] Daniel Arp, Erwin Quiring, Christian Wressnegger, and Konrad Rieck. Privacy
threats through ultrasonic side channels on mobile devices. In Security and
Privacy (EuroS&P), 2017 IEEE European Symposium on, pages 35–47. IEEE,
2017.

[47] Mika Ayenson, Dietrich J Wambach, Ashkan Soltani, Nathan Good, and Chris J
Hoofnagle. Flash cookies and privacy II: Now with HTML5 and ETag respawn-
ing. World Wide Web Internet And Web Information Systems, 2011.

[48] Mahesh Balakrishnan, Iqbal Mohomed, and Venugopalan Ramasubramanian.
Where’s that phone?: geolocating IP addresses on 3G networks. In Internet
Measurement Conference (IMC). ACM, 2009.

[49] Rebecca Balebako, Pedro Leon, Richard Shay, Blase Ur, Yang Wang, and L Cra-
nor. Measuring the effectiveness of privacy tools for limiting behavioral adver-
tising. In Web 2.0 Workshop on Security and Privacy, 2012.

[50] James Ball. NSA stores metadata of millions of web users for up to a year,
secret files show. http://www.theguardian.com/world/2013/sep/30/nsa-

americans-metadata-year-documents, 2013.

[51] Bananatag. Email Tracking for Gmail, Outlook and other clients. https:

//bananatag.com/email-tracking/. Online; accessed 2017-09-04.

213

https://www.propublica.org/article/meet-the-online-tracking-device-that-is-virtually-impossible-to-block
https://www.propublica.org/article/meet-the-online-tracking-device-that-is-virtually-impossible-to-block
https://www.propublica.org/article/facebook-doesnt-tell-users-everything-it-really-knows-about-them
https://www.propublica.org/article/facebook-doesnt-tell-users-everything-it-really-knows-about-them
https://www.propublica.org/article/facebook-doesnt-tell-users-everything-it-really-knows-about-them
https://support.apple.com/en-us/HT208695
https://support.apple.com/en-us/HT208695
http://www.theguardian.com/world/2013/sep/30/nsa-americans-metadata-year-documents
http://www.theguardian.com/world/2013/sep/30/nsa-americans-metadata-year-documents
https://bananatag.com/email-tracking/
https://bananatag.com/email-tracking/

[52] Richard Barnes. Deprecating Non-Secure HTTP. https://blog.mozilla.

org/security/2015/04/30/deprecating-non-secure-http/, 2015. Ac-
cessed: 2018-04-29.

[53] Adam Barth. HTTP State Management Mechanism. https://tools.ietf.

org/html/rfc6265.

[54] Adam Barth. The Web Origin Concept. https://tools.ietf.org/html/

rfc6454.

[55] Bernhard Bauer. Providing transparency and controls for Adobe Flash
Player’s local storage. https://blog.chromium.org/2011/04/providing-

transparency-and-controls-for.html.

[56] Howard Beales. The value of behavioral targeting. 2010.

[57] Benedict Bender, Benjamin Fabian, Stefan Lessmann, and Johannes Haupt.
E-mail tracking: Status quo and novel countermeasures. In International Con-
ference on Information Systems (ICIS), 12 2016.

[58] Frédéric Besson, Nataliia Bielova, Thomas Jensen, et al. Enforcing browser
anonymity with quantitative information flow. 2014.

[59] Reuben Binns, Jun Zhao, Max Van Kleek, and Nigel Shadbolt. Measuring third
party tracker power across web and mobile. arXiv preprint arXiv:1802.02507,
2018.

[60] Paul E. Black. Ratcliff/Obershelp pattern recognition. http://xlinux.nist.

gov/dads/HTML/ratcliffObershelp.html, December 2004.

[61] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre.
Firegloves. https://fingerprint.pet-portal.eu/?menu=6. Accessed: 2017-
01-25.

[62] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre.
User tracking on the web via cross-browser fingerprinting. In Peeter Laud,
editor, Information Security Technology for Applications, pages 31–46, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[63] Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and Dan Boneh. Mobile device
identification via sensor fingerprinting. arXiv preprint arXiv:1408.1416, 2014.

[64] Dominique Bongard. De-anonymizing users of french political forums. In
Hack.lu 2013 Conference, 2013.

[65] Justin Brookman, Phoebe Rouge, Aaron Alva, and Christina Yeung. Cross-
device tracking: Measurement and disclosures. Proceedings on Privacy En-
hancing Technologies, 2017(2):133–148, 2017.

214

https://blog.mozilla.org/security/2015/04/30/deprecating-non-secure-http/
https://blog.mozilla.org/security/2015/04/30/deprecating-non-secure-http/
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454
https://blog.chromium.org/2011/04/providing-transparency-and-controls-for.html
https://blog.chromium.org/2011/04/providing-transparency-and-controls-for.html
http://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html
http://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html
https://fingerprint.pet-portal.eu/?menu=6

[66] Bugzilla. Clear Recent History with Cache or Offline Website Data doesn’t clear
QuotaManager storage and ServiceWorkers. https://bugzilla.mozilla.org/
show_bug.cgi?id=1047098.

[67] Bugzilla. Consider making signon.autofillForms = false to be the default.
https://bugzilla.mozilla.org/show_bug.cgi?id=1427543.

[68] Bugzilla. Implement clearing of IndexedDB in browsingData API. https:

//bugzilla.mozilla.org/show_bug.cgi?id=1333050.

[69] Bugzilla. Implement clearing of LocalStorage in browsingData API. https:

//bugzilla.mozilla.org/show_bug.cgi?id=1355576.

[70] Bugzilla. password manager + XSS = disaster. https://bugzilla.mozilla.

org/show_bug.cgi?id=408531.

[71] Bugzilla. Pref to disable Web Audio API. https://bugzilla.mozilla.org/

show_bug.cgi?id=1288359.

[72] Bugzilla. Stealing Firefox saved passwords. https://bugzilla.mozilla.org/
show_bug.cgi?id=1107422.

[73] Bugzilla. Tracking using intermediate CA caching. https://bugzilla.

mozilla.org/show_bug.cgi?id=1334485.

[74] Bugzilla. WebRTC Internal IP Address Leakage. https://bugzilla.mozilla.
org/show_bug.cgi?id=959893.

[75] T. Bujlow, V. Carela-Espaol, J. Sol-Pareta, and P. Barlet-Ros. A survey on web
tracking: Mechanisms, implications, and defenses. Proceedings of the IEEE,
105(8):1476–1510, Aug 2017.

[76] Elie Bursztein. Tracking users that block cookies with a HTTP redi-
rect. http://www.elie.net/blog/security/tracking-users-that-block-

cookies-with-a-http-redirect, 2011.

[77] Marcos Caceres. Re: Notes of June 30 teleconference. https://lists.w3.org/
Archives/Public/public-device-apis/2016Jul/0000.html, 2016.

[78] SL Yinzhi Cao and E Wijmans. (cross-)browser fingerprinting via os and hard-
ware level features. In Proceedings of the 2017 Network & Distributed System
Security Symposium, NDSS, volume 17, 2017.

[79] Michael T. Capizzi and Rick Ferguson. Loyalty trends for the twentyfirst cen-
tury. Journal of Consumer Marketing, 22(2):72–80, 2005.

[80] carbureted. Add screen tracking services, bitcoin miners, miscel-
laneous third party analytics, and move wishabi.net to content.
https://github.com/disconnectme/disconnect-tracking-protection/

215

https://bugzilla.mozilla.org/show_bug.cgi?id=1047098
https://bugzilla.mozilla.org/show_bug.cgi?id=1047098
https://bugzilla.mozilla.org/show_bug.cgi?id=1427543
https://bugzilla.mozilla.org/show_bug.cgi?id=1333050
https://bugzilla.mozilla.org/show_bug.cgi?id=1333050
https://bugzilla.mozilla.org/show_bug.cgi?id=1355576
https://bugzilla.mozilla.org/show_bug.cgi?id=1355576
https://bugzilla.mozilla.org/show_bug.cgi?id=408531
https://bugzilla.mozilla.org/show_bug.cgi?id=408531
https://bugzilla.mozilla.org/show_bug.cgi?id=1288359
https://bugzilla.mozilla.org/show_bug.cgi?id=1288359
https://bugzilla.mozilla.org/show_bug.cgi?id=1107422
https://bugzilla.mozilla.org/show_bug.cgi?id=1107422
https://bugzilla.mozilla.org/show_bug.cgi?id=1334485
https://bugzilla.mozilla.org/show_bug.cgi?id=1334485
https://bugzilla.mozilla.org/show_bug.cgi?id=959893
https://bugzilla.mozilla.org/show_bug.cgi?id=959893
http://www.elie.net/blog/security/tracking-users-that-block-cookies-with-a-http-redirect
http://www.elie.net/blog/security/tracking-users-that-block-cookies-with-a-http-redirect
https://lists.w3.org/Archives/Public/public-device-apis/2016Jul/0000.html
https://lists.w3.org/Archives/Public/public-device-apis/2016Jul/0000.html
https://github.com/disconnectme/disconnect-tracking-protection/commit/09c7b279a88c8eda1ae18fe7b405e6cc315d2855
https://github.com/disconnectme/disconnect-tracking-protection/commit/09c7b279a88c8eda1ae18fe7b405e6cc315d2855

commit/09c7b279a88c8eda1ae18fe7b405e6cc315d2855, 2017. Accessed:
2018-05-28.

[81] Juan Miguel Carrascosa, Jakub Mikians, Ruben Cuevas, Vijay Erramilli, and
Nikolaos Laoutaris. I always feel like somebody’s watching me: measuring
online behavioural advertising. In Proceedings of the 11th ACM Conference on
Emerging Networking Experiments and Technologies, page 13. ACM, 2015.

[82] Biz Carson. You’re more likely to order a pricey Uber ride if your phone is
about to die. http://uk.businessinsider.com/people-with-low-phone-

batteries-more-likely-to-accept-uber-surge-pricing-2016-5, 2016.

[83] Pew Research Center. Mobile Fact Sheet. http://www.pewinternet.org/

fact-sheet/mobile/, 2018. [Online; accessed 2018-02-11].

[84] Keith Chen. This Is Your Brain On Uber. http://www.npr.org/2016/05/17/
478266839/this-is-your-brain-on-uber, 2016.

[85] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-channel
leaks in web applications: A reality today, a challenge tomorrow. In Security
and Privacy (S&P). IEEE, 2010.

[86] Dawn Chmielewski. How ’Do Not Track’ Ended Up Going Nowhere.
https://www.recode.net/2016/1/4/11588418/how-do-not-track-ended-

up-going-nowhere, 2016.

[87] Chris Peterson. Removing the Battery Status API? https://groups.google.

com/forum/#!msg/mozilla.dev.platform/5U8NHoUY-1k/9ybyzQIYCAAJ,
2016.

[88] Wolfie Christl, Katharina Kopp, and Patrick Urs Riechert. Corporate surveil-
lance in everyday life. Cracked Labs, 2017.

[89] Wolfie Christl and Sarah Spiekermann. Networks of Control. A Report on Cor-
porate Surveillance, Digital Tracking, Big Data & Privacy. facultas, 2016.

[90] Chromium. Users can be tracked via password manager. https://bugs.

chromium.org/p/chromium/issues/detail?id=798492.

[91] Andrew Clement. IXmaps–Tracking your personal data through the NSA’s
warrantless wiretapping sites. In International Symposium on Technology and
Society (ISTAS). IEEE, 2013.

[92] European Commission. 2018 reform of EU data protection rules. https:

//ec.europa.eu/commission/priorities/justice-and-fundamental-

rights/data-protection/2018-reform-eu-data-protection-rules_en.
Accessed: 2018-06-23.

216

https://github.com/disconnectme/disconnect-tracking-protection/commit/09c7b279a88c8eda1ae18fe7b405e6cc315d2855
https://github.com/disconnectme/disconnect-tracking-protection/commit/09c7b279a88c8eda1ae18fe7b405e6cc315d2855
http://uk.businessinsider.com/people-with-low-phone-batteries-more-likely-to-accept-uber-surge-pricing-2016-5
http://uk.businessinsider.com/people-with-low-phone-batteries-more-likely-to-accept-uber-surge-pricing-2016-5
http://www.pewinternet.org/fact-sheet/mobile/
http://www.pewinternet.org/fact-sheet/mobile/
http://www.npr.org/2016/05/17/478266839/this-is-your-brain-on-uber
http://www.npr.org/2016/05/17/478266839/this-is-your-brain-on-uber
https://www.recode.net/2016/1/4/11588418/how-do-not-track-ended-up-going-nowhere
https://www.recode.net/2016/1/4/11588418/how-do-not-track-ended-up-going-nowhere
https://groups.google.com/forum/#!msg/mozilla.dev.platform/5U8NHoUY-1k/9ybyzQIYCAAJ
https://groups.google.com/forum/#!msg/mozilla.dev.platform/5U8NHoUY-1k/9ybyzQIYCAAJ
https://bugs.chromium.org/p/chromium/issues/detail?id=798492
https://bugs.chromium.org/p/chromium/issues/detail?id=798492
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en

[93] Federal Trade Commission. Cross-Device Tracking: An FTC Staff Report.
https://www.ftc.gov/system/files/documents/reports/cross-device-

tracking-federal-trade-commission-staff-report-january-2017/ftc_

cross-device_tracking_report_1-23-17.pdf, 2017. Accessed: 2018-02-01.

[94] ContactMonkey. Email Tracking for Outlook and Gmail. https://www.

contactmonkey.com/email-tracking. Online; accessed 2017-09-04.

[95] Alissa Cooper, Hannes Tschofenig, Bernard Aboba, Jon Peterson, J Morris,
Marit Hansen, and Rhys Smith. Rfc 6973 — privacy considerations for internet
protocols. Technical report, IETF, 2013.

[96] Criteo. Data Collection and Use. https://www.criteo.com/privacy/. Ac-
cessed: 2018-05-12.

[97] Luke Crouch. Preventing data leaks by stripping path information in HTTP
Referrers. https://blog.mozilla.org/security/2018/01/31/preventing-

data-leaks-by-stripping-path-information-in-http-referrers/, 2018.
Accessed: 2018-02-01.

[98] Anupam Das, Nikita Borisov, and Matthew Caesar. Tracking mobile web users
through motion sensors: Attacks and defenses. In NDSS ’16: The 2016 Network
and Distributed System Security Symposium, 2016.

[99] Anupam Das, Nikita Borisov, Edward Chou, and Muhammad Haris Mughees.
Smartphone fingerprinting via motion sensors: Analyzing feasibility at large-
scale and studying real usage patterns. arXiv preprint arXiv:1605.08763, 2016.

[100] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experi-
ments on ad privacy settings. Privacy Enhancing Technologies, 2015.

[101] Wendy Davis. KISSmetrics Finalizes Supercookies Settlement.
http://www.mediapost.com/publications/article/191409/kissmetrics-

finalizes-supercookies-settlement.html, 2013. [Online; accessed
12-May-2014].

[102] Frank Dawson. Specification Privacy Assessment (SPA) . https://yrlesru.

github.io/SPA/, 2013.

[103] Paul-Olivier Dehaye. pdehaye/BigOther. https://github.com/pdehaye/

BigOther/tree/master/uber, November 2016.

[104] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and Sri-
hari Nelakuditi. Accelprint: Imperfections of accelerometers make smartphones
trackable. In NDSS, 2014.

[105] Disconnect. Tracking Protection Lists. https://disconnect.me/

trackerprotection.

217

https://www.ftc.gov/system/files/documents/reports/cross-device-tracking-federal-trade-commission-staff-report-january-2017/ftc_cross-device_tracking_report_1-23-17.pdf
https://www.ftc.gov/system/files/documents/reports/cross-device-tracking-federal-trade-commission-staff-report-january-2017/ftc_cross-device_tracking_report_1-23-17.pdf
https://www.ftc.gov/system/files/documents/reports/cross-device-tracking-federal-trade-commission-staff-report-january-2017/ftc_cross-device_tracking_report_1-23-17.pdf
https://www.contactmonkey.com/email-tracking
https://www.contactmonkey.com/email-tracking
https://www.criteo.com/privacy/
https://blog.mozilla.org/security/2018/01/31/preventing-data-leaks-by-stripping-path-information-in-http-referrers/
https://blog.mozilla.org/security/2018/01/31/preventing-data-leaks-by-stripping-path-information-in-http-referrers/
http://www.mediapost.com/publications/article/191409/kissmetrics-finalizes-supercookies-settlement.html
http://www.mediapost.com/publications/article/191409/kissmetrics-finalizes-supercookies-settlement.html
 https://yrlesru.github.io/SPA/
 https://yrlesru.github.io/SPA/
https://github.com/pdehaye/BigOther/tree/master/uber
https://github.com/pdehaye/BigOther/tree/master/uber
https://disconnect.me/trackerprotection
https://disconnect.me/trackerprotection

[106] Disconnect. Disconnect blocks new tracking device that makes your computer
draw a unique image. https://blog.disconnect.me/disconnect-blocks-

new-tracking-device-that-makes-your-computer-draw-a-unique-

image/, 2014. Accessed: 2018-05-28.

[107] Nick Doty. Mitigating Browser Fingerprinting in Web Specifications. https:

//github.com/w3c/fingerprinting-guidance/issues/3, 2015.

[108] Nick Doty. Reviewing for privacy in internet and web standard-setting. In
Security and Privacy Workshops (SPW), 2015 IEEE, pages 185–192. IEEE,
2015.

[109] Zakir Durumeric, David Adrian, Ariana Mirian, James Kasten, Elie Bursztein,
Nicolas Lidzborski, Kurt Thomas, Vijay Eranti, Michael Bailey, and J Alex
Halderman. Neither snow nor rain nor mitm...: An empirical analysis of email
delivery security. In Proceedings of the 2015 ACM Conference on Internet Mea-
surement Conference, pages 27–39. ACM, 2015.

[110] Peter Eckersley. How unique is your web browser? In Privacy Enhancing
Technologies. Springer, 2010.

[111] Brad Eidson. Bug 164213 - Remove Battery Status API from the tree . https:
//bugs.webkit.org/show_bug.cgi?id=164213, 2016.

[112] Jochen Eisinger and Emily Stark. Referrer Policy – W3C Candidate Recommen-
dation. https://www.w3.org/TR/referrer-policy/, 2017. Accessed: 2018-
02-01.

[113] Electronic Frontier Foundation. Encrypting the Web. https://www.eff.org/
encrypt-the-web.

[114] Ben Elgin and Vernon Silver. The Surveillance Market and Its Victims. http://
www.bloomberg.com/data-visualization/wired-for-repression/, 2011.

[115] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy monitor-
ing on smartphones. ACM Trans. Comput. Syst., 32(2):5:1–5:29, June 2014.

[116] Steven Englehardt, Gunes Acar, and Arvind Narayanan. No bound-
aries: Exfiltration of personal data by session-replay scripts. https:

//freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-

of-personal-data-by-session-replay-scripts/, 2017.

[117] Steven Englehardt, Gunes Acar, and Arvind Narayanan. No boundaries
for credentials: New password leaks to Mixpanel and Session Replay Com-
panies. https://freedom-to-tinker.com/2018/02/26/no-boundaries-

for-credentials-password-leaks-to-mixpanel-and-session-replay-

companies/, 2018.

218

https://blog.disconnect.me/disconnect-blocks-new-tracking-device-that-makes-your-computer-draw-a-unique-image/
https://blog.disconnect.me/disconnect-blocks-new-tracking-device-that-makes-your-computer-draw-a-unique-image/
https://blog.disconnect.me/disconnect-blocks-new-tracking-device-that-makes-your-computer-draw-a-unique-image/
https://github.com/w3c/fingerprinting-guidance/issues/3
https://github.com/w3c/fingerprinting-guidance/issues/3
https://bugs.webkit.org/show_bug.cgi?id=164213
https://bugs.webkit.org/show_bug.cgi?id=164213
https://www.w3.org/TR/referrer-policy/
https://www.eff.org/encrypt-the-web
https://www.eff.org/encrypt-the-web
http://www.bloomberg.com/data-visualization/wired-for-repression/
http://www.bloomberg.com/data-visualization/wired-for-repression/
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/
https://freedom-to-tinker.com/2018/02/26/no-boundaries-for-credentials-password-leaks-to-mixpanel-and-session-replay-companies/
https://freedom-to-tinker.com/2018/02/26/no-boundaries-for-credentials-password-leaks-to-mixpanel-and-session-replay-companies/
https://freedom-to-tinker.com/2018/02/26/no-boundaries-for-credentials-password-leaks-to-mixpanel-and-session-replay-companies/

[118] Steven Englehardt, Gunes Acar, and Arvind Narayanan. Website op-
erators are in the dark about privacy violations by third-party scripts.
https://freedom-to-tinker.com/2018/01/12/website-operators-are-

in-the-dark-about-privacy-violations-by-third-party-scripts/,
2018.

[119] Steven Englehardt, Jeffrey Han, and Arvind Narayanan. I never signed up for
this! privacy implications of email tracking. Proceedings on Privacy Enhancing
Technologies, 2018(1):109–126, 2018.

[120] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site
measurement and analysis. In ACM Conference on Computer and Communi-
cations Security, 2016.

[121] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman,
Jonathan Mayer, Arvind Narayanan, and Edward W Felten. Cookies that give
you away: The surveillance implications of web tracking. In 24th International
Conference on World Wide Web, pages 289–299. International World Wide Web
Conferences Steering Committee, 2015.

[122] Christian Eubank, Marcela Melara, Diego Perez-Botero, and Arvind
Narayanan. Shining the floodlights on mobile web tracking - a privacy sur-
vey. W2SP, 2013.

[123] Chris Evans, Chris Palmer, and Ryan Sleevi. Public Key Pinning Extension for
HTTP. https://tools.ietf.org/html/rfc7469.

[124] Benjamin Fabian, Benedict Bender, and Lars Weimann. E-mail tracking in
online marketing: Methods, detection, and usage. In 12th International Con-
ference Business Informatics, 03 2015.

[125] Ayman Farahat and Michael C Bailey. How effective is targeted advertising?
In Proceedings of the 21st international conference on World Wide Web, pages
111–120. ACM, 2012.

[126] Stephen Farrell and Hannes Tschofenig. Pervasive Monitoring Is an Attack.
https://datatracker.ietf.org/doc/rfc7258/, 2014. Accessed: 2018-04-29.

[127] Federal Trade Commission. Google will pay $22.5 million to settle FTC
charges it misrepresented privacy assurances to users of Apple’s Safari internet
browser. https://www.ftc.gov/news-events/press-releases/2012/08/

google-will-pay-225-million-settle-ftc-charges-it-misrepresented,
2012.

[128] Edward W. Felten and Michael A. Schneider. Timing attacks on web privacy.
In Proceedings of the 7th ACM Conference on Computer and Communications
Security, CCS ’00, pages 25–32, New York, NY, USA, 2000. ACM.

219

https://freedom-to-tinker.com/2018/01/12/website-operators-are-in-the-dark-about-privacy-violations-by-third-party-scripts/
https://freedom-to-tinker.com/2018/01/12/website-operators-are-in-the-dark-about-privacy-violations-by-third-party-scripts/
https://tools.ietf.org/html/rfc7469
https://datatracker.ietf.org/doc/rfc7258/
https://www.ftc.gov/news-events/press-releases/2012/08/google-will-pay-225-million-settle-ftc-charges-it-misrepresented
https://www.ftc.gov/news-events/press-releases/2012/08/google-will-pay-225-million-settle-ftc-charges-it-misrepresented

[129] R. Fielding and J. Reschke. RFC 7231: Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. https://tools.ietf.org/html/

rfc7231, 2014.

[130] David Fifield and Serge Egelman. Fingerprinting web users through font met-
rics. In Financial Cryptography and Data Security, pages 107–124. Springer,
2015.

[131] Nathaniel Fruchter, Hsin Miao, Scott Stevenson, and Rebecca Balebako. Vari-
ations in tracking in relation to geographic location. In Proceedings of W2SP,
2015.

[132] Federal Trade Commission (FTC). VIZIO to Pay $2.2 Million to
FTC, State of New Jersey to Settle Charges It Collected Viewing
Histories on 11 Million Smart Televisions without Users’ Consent.
https://www.ftc.gov/news-events/press-releases/2017/02/vizio-

pay-22-million-ftc-state-new-jersey-settle-charges-it, 2017. Ac-
cessed: 2018-03-31.

[133] Brent Fulgham. Protecting Against HSTS Abuse. https://webkit.org/blog/
8146/protecting-against-hsts-abuse/, 2018. [Online; accessed 2018-05-
28].

[134] FullStory. Terms & Conditions. https://web.archive.org/web/

20171115044316/https://www.fullstory.com/legal/terms-and-

conditions/, 2017. Accessed: 2018-05-09.

[135] Ryan Gallagher. Operation Socialist: The Inside Story of How British Spies
Hacked Belgiums Largest Telco. https://firstlook.org/theintercept/

2014/12/13/belgacom-hack-gchq-inside-story/, 2014.

[136] gameb0y. HTML5 Battery Status API. https://github.com/brave/browser-
laptop/issues/1885, 2016. Accessed: 2018-05-28.

[137] Ghostery. Are we private yet? http://www.areweprivateyet.com/.

[138] Christopher Gillespie. Why both marketers and consumers love email. https://
blog.liveintent.com/marketers-consumers-love-email/. Accessed: 2018-
05-12.

[139] Gmail Help. Choose whether to show images. https://support.google.com/
mail/answer/145919. Online; accessed 2017-09-06.

[140] Avi Goldfarb and Catherine E. Tucker. Privacy regulation and online advertis-
ing. Management Science, 57(1):57–71, 2011.

[141] Steven Goldfeder, Harry Kalodner, Dillon Reisman, and Arvind Narayanan.
When the cookie meets the blockchain: Privacy risks of web payments via
cryptocurrencies. arXiv preprint arXiv:1708.04748, 2017.

220

https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://www.ftc.gov/news-events/press-releases/2017/02/vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it
https://www.ftc.gov/news-events/press-releases/2017/02/vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it
https://webkit.org/blog/8146/protecting-against-hsts-abuse/
https://webkit.org/blog/8146/protecting-against-hsts-abuse/
https://web.archive.org/web/20171115044316/https://www.fullstory.com/legal/terms-and-conditions/
https://web.archive.org/web/20171115044316/https://www.fullstory.com/legal/terms-and-conditions/
https://web.archive.org/web/20171115044316/https://www.fullstory.com/legal/terms-and-conditions/
https://firstlook.org/theintercept/2014/12/13/belgacom-hack-gchq-inside-story/
https://firstlook.org/theintercept/2014/12/13/belgacom-hack-gchq-inside-story/
https://github.com/brave/browser-laptop/issues/1885
https://github.com/brave/browser-laptop/issues/1885
http://www.areweprivateyet.com/
https://blog.liveintent.com/marketers-consumers-love-email/
https://blog.liveintent.com/marketers-consumers-love-email/
https://support.google.com/mail/answer/145919
https://support.google.com/mail/answer/145919

[142] Rob Goldman and Alex Himel. Making Ads and Pages More Trans-
parent. https://newsroom.fb.com/news/2018/04/transparent-ads-and-

pages/, 2018.

[143] Jordan Golson. Uber knows you’ll probably pay surge pricing if your battery is
about to die. http://www.theverge.com/2016/5/20/11721890/uber-surge-
pricing-low-battery, 2016.

[144] Siobhan Gorman and Jennifer Valentino-Devries. New Details Show Broader
NSA Surveillance Reach. http://on.wsj.com/1zcVv78, 2013.

[145] Scott Graham, Ted Mielczarek, Brandon Jones, and Steve Agoston.
Gamepad API – Working Draft. https://www.w3.org/TR/2018/WD-gamepad-
20180508/, 2018. Accessed: 2018-05-28.

[146] Stacey Gray. Understanding Session Replay Scripts a Guide for Privacy Pro-
fessionals. https://fpf.org/2018/03/05/understanding-session-replay-

scripts-a-guide-for-privacy-professionals/, 2018. Accessed: 2018-05-
28.

[147] Seda Gürses and Jose M del Alamo. Privacy engineering: Shaping an emerging
field of research and practice. IEEE Security & Privacy, 14(2):40–46, 2016.

[148] Dean Hachamovitch. Google Bypassing User Privacy Settings.
https://blogs.msdn.microsoft.com/ie/2012/02/20/google-bypassing-

user-privacy-settings/, 2012.

[149] Joseph Lorenzo Hall. Its Time to Move to HTTPS. https://cdt.org/blog/

its-time-to-move-to-https/, 2016. Accessed: 2018-05-28.

[150] Aniko Hannak, Piotr Sapiezynski, Arash Molavi Kakhki, Balachander Krishna-
murthy, David Lazer, Alan Mislove, and Christo Wilson. Measuring personal-
ization of web search. In Conference on World Wide Web, 2013.

[151] Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo Wilson.
Measuring price discrimination and steering on e-commerce web sites. In 14th
Internet Measurement Conference, 2014.

[152] Manoj Hastak and Mary J Culnan. Persistent and unblockable cook-
ies using HTTP headers. http://www.nikcub.com/posts/persistant-and-

unblockable-cookies-using-http-headers, 2011.

[153] Alex Hern. UK homes vulnerable to ’staggering’ level of corporate surveil-
lance. https://www.theguardian.com/technology/2018/jun/01/uk-

homes-vulnerable-to-staggering-level-of-corporate-surveillance.
Accessed: 2018-06-03.

221

https://newsroom.fb.com/news/2018/04/transparent-ads-and-pages/
https://newsroom.fb.com/news/2018/04/transparent-ads-and-pages/
http://www.theverge.com/2016/5/20/11721890/uber-surge-pricing-low-battery
http://www.theverge.com/2016/5/20/11721890/uber-surge-pricing-low-battery
http://on.wsj.com/1zcVv78
https://www.w3.org/TR/2018/WD-gamepad-20180508/
https://www.w3.org/TR/2018/WD-gamepad-20180508/
https://fpf.org/2018/03/05/understanding-session-replay-scripts-a-guide-for-privacy-professionals/
https://fpf.org/2018/03/05/understanding-session-replay-scripts-a-guide-for-privacy-professionals/
https://blogs.msdn.microsoft.com/ie/2012/02/20/google-bypassing-user-privacy-settings/
https://blogs.msdn.microsoft.com/ie/2012/02/20/google-bypassing-user-privacy-settings/
https://cdt.org/blog/its-time-to-move-to-https/
https://cdt.org/blog/its-time-to-move-to-https/
http://www.nikcub.com/posts/persistant-and-unblockable-cookies-using-http-headers
http://www.nikcub.com/posts/persistant-and-unblockable-cookies-using-http-headers
https://www.theguardian.com/technology/2018/jun/01/uk-homes-vulnerable-to-staggering-level-of-corporate-surveillance
https://www.theguardian.com/technology/2018/jun/01/uk-homes-vulnerable-to-staggering-level-of-corporate-surveillance

[154] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website Finger-
printing: Attacking Popular Privacy Enhancing Technologies with the Multi-
nomial Naive-Bayes Classifier. In Workshop on Cloud Computing Security
(CCSW). ACM, 2009.

[155] Brad Hill. Is preventing browser fingerprinting a lost cause? In Technical
Plenary Advisory Committee (TPAC) Meetings Week, 2012.

[156] Andrew Hintz. Fingerprinting Websites Using Traffic Analysis. In Privacy
Enhancing Technologies. Springer, 2003.

[157] Jeff Hodges, Colin Jackson, and Adam Barth. HTTP Strict Transport Security
(HSTS). https://tools.ietf.org/html/rfc6797.

[158] Ralph Holz, Johanna Amann, Olivier Mehani, Mohamed Ali Kâafar, and
Matthias Wachs. TLS in the wild: An internet-wide analysis of tls-based pro-
tocols for electronic communication. In 23nd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California, USA, Febru-
ary 21-24, 2016, 2016.

[159] Chris Jay Hoofnagle and Nathan Good. Web privacy census. Available at SSRN
2460547, 2012.

[160] HubSpot. Start Email Tracking Today. https://www.hubspot.com/products/
sales/email-tracking. Online; accessed 2017-09-04.

[161] Apple Inc. CVE-2018-4137. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-4137, 2018. Accessed: 2018-05-28.

[162] Marcus Niemietz Jrg Schwenk and Christian Mainka. Same-origin policy: Eval-
uation in modern browsers. In 26th USENIX Security Symposium (USENIX
Security 17), Vancouver, BC, 2017. USENIX Association.

[163] Samy Kamkar. Evercookie - virtually irrevocable persistent cookies. http:

//samy.pl/evercookie/, Sep 2010.

[164] Josh Karlin. AdFrame. https://github.com/jkarlin/ad-frame. Accessed:
2018-06-03.

[165] Dan Keating, Kevin Schaul, and Leslie Shapiro. The Facebook ads Russians
targeted at different groups. https://www.washingtonpost.com/graphics/

2017/business/russian-ads-facebook-targeting/?noredirect=on&utm_

term=.a338e3b27e98, 2017.

[166] Michael Kerrisk. strace(1) - linux manual page. http://man7.org/linux/man-
pages/man1/strace.1.html, May 2014.

[167] Jonathan Kingston. Restricting AppCache to Secure Contexts. https:

//blog.mozilla.org/security/2018/02/12/restricting-appcache-

secure-contexts/, 2018. Accessed: 2018-05-09.

222

https://tools.ietf.org/html/rfc6797
https://www.hubspot.com/products/sales/email-tracking
https://www.hubspot.com/products/sales/email-tracking
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-4137
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-4137
http://samy.pl/evercookie/
http://samy.pl/evercookie/
https://github.com/jkarlin/ad-frame
https://www.washingtonpost.com/graphics/2017/business/russian-ads-facebook-targeting/?noredirect=on&utm_term=.a338e3b27e98
https://www.washingtonpost.com/graphics/2017/business/russian-ads-facebook-targeting/?noredirect=on&utm_term=.a338e3b27e98
https://www.washingtonpost.com/graphics/2017/business/russian-ads-facebook-targeting/?noredirect=on&utm_term=.a338e3b27e98
http://man7.org/linux/man-pages/man1/strace.1.html
http://man7.org/linux/man-pages/man1/strace.1.html
https://blog.mozilla.org/security/2018/02/12/restricting-appcache-secure-contexts/
https://blog.mozilla.org/security/2018/02/12/restricting-appcache-secure-contexts/
https://blog.mozilla.org/security/2018/02/12/restricting-appcache-secure-contexts/

[168] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. Remote physical
device fingerprinting. IEEE Transactions on Dependable and Secure Computing,
2(2):93–108, 2005.

[169] Anssi Konstiainen. Allow use from within secure context and top-level browsing
context only. https://github.com/w3c/battery/issues/10, 2017.

[170] Anssi Kostiainen. Vibration API. https://www.w3.org/TR/vibration/, 2016.

[171] Anssi Kostiainen. Battery Status Event Specification. https://www.w3.org/

TR/2011/WD-battery-status-20110426/, April 2011.

[172] Anssi Kostiainen. Battery Status API. https://www.w3.org/TR/2011/WD-

battery-status-20111129/, November 2011.

[173] Anssi Kostiainen and Mounir Lamouri. Battery Status API. https://www.w3.
org/TR/2014/CR-battery-status-20141209, 2014.

[174] Anssi Kostiainen and Mounir Lamouri. Battery Status API. https://www.w3.
org/TR/battery-status/, July 2016.

[175] Anssi Kostiainen and Mounir Lamouri. Battery Status API. https://www.w3.
org/TR/2016/PR-battery-status-20160329, March 2016.

[176] Anssi Kostiainen and Mounir Lamouri. Battery Status API. https://www.w3.
org/TR/2012/CR-battery-status-20120508/, May 2012.

[177] Andy Kowl. Data Leakage Devalues Publishers’ Biggest Asset –
Their Audience. https://www.pubexec.com/post/data-leakage-devalues-
publishers-biggest-asset-audience/, 2017.

[178] Michael Kranch and Joseph Bonneau. Upgrading HTTPS in midair: HSTS
and key pinning in practice. In NDSS ’15: The 2015 Network and Distributed
System Security Symposium, February 2015.

[179] Serge A Krashakov, Anton B Teslyuk, and Lev N Shchur. On the universality
of rank distributions of website popularity. Computer Networks, 50(11):1769–
1780, 2006.

[180] Balachander Krishnamurthy, Konstantin Naryshkin, and Craig Wills. Privacy
leakage vs. protection measures: the growing disconnect. In Proceedings of
W2SP, volume 2, 2011.

[181] Balachander Krishnamurthy and Craig Wills. Privacy diffusion on the web: a
longitudinal perspective. In Conference on World Wide Web. ACM, 2009.

[182] Balachander Krishnamurthy and Craig Wills. Privacy diffusion on the Web:
a longitudinal perspective. In International Conference on World Wide Web,
pages 541–550. ACM, 2009.

223

https://github.com/w3c/battery/issues/10
https://www.w3.org/TR/vibration/
https://www.w3.org/TR/2011/WD-battery-status-20110426/
https://www.w3.org/TR/2011/WD-battery-status-20110426/
https://www.w3.org/TR/2011/WD-battery-status-20111129/
https://www.w3.org/TR/2011/WD-battery-status-20111129/
https://www.w3.org/TR/2014/CR-battery-status-20141209
https://www.w3.org/TR/2014/CR-battery-status-20141209
https://www.w3.org/TR/battery-status/
https://www.w3.org/TR/battery-status/
https://www.w3.org/TR/2016/PR-battery-status-20160329
https://www.w3.org/TR/2016/PR-battery-status-20160329
https://www.w3.org/TR/2012/CR-battery-status-20120508/
https://www.w3.org/TR/2012/CR-battery-status-20120508/
https://www.pubexec.com/post/data-leakage-devalues-publishers-biggest-asset-audience/
https://www.pubexec.com/post/data-leakage-devalues-publishers-biggest-asset-audience/

[183] Balachander Krishnamurthy and Craig E Wills. On the leakage of personally
identifiable information via online social networks. In 2nd ACM workshop on
Online social networks. ACM, 2009.

[184] Balachander Krishnamurthy and Craig E Wills. Privacy leakage in mobile
online social networks. In 3rd conference on Online social networks. USENIX
Association, 2010.

[185] David M. Kristol. Http cookies: Standards, privacy, and politics. ACM Trans.
Internet Technology, 1(2):151–198, November 2001.

[186] Rich LaBarca. The Facts About Our Use of a Canvas Element in Our Re-
cent R&D Test. https://www.addthis.com/blog/2014/07/23/the-facts-

about-our-use-of-a-canvas-element-in-our-recent-rd-test/, 2014.

[187] Anja Lambrecht and Catherine Tucker. When does retargeting work? informa-
tion specificity in online advertising. Journal of Marketing Research, 50(5):561–
576, 2013.

[188] Mounir Lamouri. Media Capabilities – Draft Community Group Report. https:
//wicg.github.io/media-capabilities/, 2018. Accessed: 2018-05-16.

[189] Mounir Lamouri, Marcos Cceres, and Jeffrey Yaskin. Permissions API. https:
//w3c.github.io/permissions/, 2016. Accessed: 15.02.17.

[190] Tobie Langel and Rick Waldron. Generic Sensors API. https://www.w3.org/
TR/generic-sensor/, 2017.

[191] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. Fprandom: Randomizing
core browser objects to break advanced device fingerprinting techniques. In
International Symposium on Engineering Secure Software and Systems, pages
97–114. Springer, 2017.

[192] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Mitigating browser
fingerprint tracking: multi-level reconfiguration and diversification. In Proceed-
ings of the 10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 98–108. IEEE Press, 2015.

[193] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the
beast: Diverting modern web browsers to build unique browser fingerprints. In
37th IEEE Symposium on Security and Privacy (S&P 2016), 2016.

[194] Mathias Lécuyer, Guillaume Ducoffe, Francis Lan, Andrei Papancea, Theofilos
Petsios, Riley Spahn, Augustin Chaintreau, and Roxana Geambasu. Xray:
Enhancing the web’s transparency with differential correlation. In USENIX
Security Symposium, 2014.

224

https://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/
https://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/
https://wicg.github.io/media-capabilities/
https://wicg.github.io/media-capabilities/
https://w3c.github.io/permissions/
https://w3c.github.io/permissions/
https://www.w3.org/TR/generic-sensor/
https://www.w3.org/TR/generic-sensor/

[195] Mathias Lecuyer, Riley Spahn, Yannis Spiliopolous, Augustin Chaintreau, Rox-
ana Geambasu, and Daniel Hsu. Sunlight: Fine-grained targeting detection at
scale with statistical confidence. In Proceedings of CCS. ACM, 2015.

[196] Micah Lee. Secret “BADASS” Intelligence Program Spied on Smartphones.
https://firstlook.org/theintercept/2015/01/26/secret-badass-spy-

program/, 2015.

[197] Pedro Giovanni Leon, Lorrie Faith Cranor, Aleecia M McDonald, and Robert
McGuire. Token attempt: the misrepresentation of website privacy policies
through the misuse of p3p compact policy tokens. In Proceedings of the 9th
annual ACM workshop on Privacy in the electronic society, pages 93–104. ACM,
2010.

[198] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roes-
ner. Internet jones and the raiders of the lost trackers: An archaeological study
of web tracking from 1996 to 2016. In Proceedings of USENIX Security), 2016.

[199] John Leyden. Sites pulling sneaky flash cookie-snoop. http://www.

theregister.co.uk/2009/08/19/flash_cookies/, 2009.

[200] Hannah Li and David Evans. Horcrux: A password manager for paranoids.
arXiv preprint arXiv:1706.05085, 2017.

[201] Timothy Libert. Exposing the invisible web: An analysis of third-party http
requests on 1 million websites. International Journal of Communication, 9(0),
2015.

[202] Timothy Libert. An automated approach to auditing disclosure of third-party
data collection in website privacy policies. In Proceedings of the 2018 World
Wide Web Conference on World Wide Web, pages 207–216. International World
Wide Web Conferences Steering Committee, 2018.

[203] Bin Liu, Anmol Sheth, Udi Weinsberg, Jaideep Chandrashekar, and Ramesh
Govindan. AdReveal: improving transparency into online targeted advertising.
In Workshop on Hot Topics in Networks. ACM, 2013.

[204] Fang Liu, Chun Wang, Andres Pico, Danfeng Yao, and Gang Wang. Measur-
ing the insecurity of mobile deep links of android. In 26th USENIX Security
Symposium (USENIX Security 17), pages 953–969. USENIX Association, 2017.

[205] LiveIntent. What information do we collect? https://liveintent.com/

services-privacy-policy/. Accessed: 2018-05-12.

[206] lukemulks. Block ad tracking scripts used with password managers. https://

github.com/disconnectme/disconnect-tracking-protection/issues/36,
2018. Accessed: 2018-05-28.

225

https://firstlook.org/theintercept/2015/01/26/secret-badass-spy-program/
https://firstlook.org/theintercept/2015/01/26/secret-badass-spy-program/
http://www.theregister.co.uk/2009/08/19/flash_cookies/
http://www.theregister.co.uk/2009/08/19/flash_cookies/
https://liveintent.com/services-privacy-policy/
https://liveintent.com/services-privacy-policy/
https://github.com/disconnectme/disconnect-tracking-protection/issues/36
https://github.com/disconnectme/disconnect-tracking-protection/issues/36

[207] Max Maass, Pascal Wichmann, Henning Pridöhl, and Dominik Herrmann. Pri-
vacyscore: Improving privacy and security via crowd-sourced benchmarks of
websites. In Annual Privacy Forum, pages 178–191. Springer, 2017.

[208] Doug Madory, Chris Cook, and Kevin Miao. Who Are the Anycasters? In
Proceedings of NANOG59, 10 2013.

[209] Gregor Maier, Fabian Schneider, and Anja Feldmann. Nat usage in residen-
tial broadband networks. In International Conference on Passive and Active
Network Measurement, pages 32–41. Springer, 2011.

[210] Delfina Malandrino, Andrea Petta, Vittorio Scarano, Luigi Serra, Raffaele
Spinelli, and Balachander Krishnamurthy. Privacy awareness about informa-
tion leakage: Who knows what about me? In Workshop on Privacy in the
Electronic Society. ACM, 2013.

[211] Matthias Marx, Ephraim Zimmer, Tobias Mueller, Maximilian Blochberger,
and Hannes Federrath. Hashing of personally identifiable information is not
sufficient. SICHERHEIT 2018, 2018.

[212] Iraklis Mathiopoulos. Running hashcat v4.0.0 in Amazons AWS new
p3.16xlarge instance. https://medium.com/@iraklis/running-hashcat-

v4-0-0-in-amazons-aws-new-p3-16xlarge-instance-e8fab4541e9b, 2017.
Accessed: 2018-05-09.

[213] Vasilios Mavroudis, Shuang Hao, Yanick Fratantonio, Federico Maggi, Christo-
pher Kruegel, and Giovanni Vigna. On the privacy and security of the ultra-
sound ecosystem. Proceedings on Privacy Enhancing Technologies, 2017(2):95–
112, 2017.

[214] Jonathan Mayer. Do Not Track Is No Threat to Ad-Supported Businesses.
http://cyberlaw.stanford.edu/node/6592, 2011.

[215] Jonathan Mayer. Tracking the trackers: Self-help tools. https://cyberlaw.

stanford.edu/blog/2011/09/tracking-trackers-self-help-tools, 2011.

[216] Jonathan Mayer. Tracking the trackers: Where everybody knows
your username. https://cyberlaw.stanford.edu/blog/2011/10/tracking-
trackers-where-everybody-knows-your-username, 2011.

[217] Jonathan Mayer. The Turn-Verizon Zombie Cookie. http://webpolicy.org/

2015/01/14/turn-verizon-zombie-cookie/, 2015.

[218] Jonathan Mayer and Edward W. Felten. The Web is Flat. http://webpolicy.
org/2013/10/30/the-web-is-flat/, 2013.

[219] Jonathan R Mayer. “any person... a pamphleteer”: Internet anonymity in the
age of web 2.0. 2009.

226

https://medium.com/@iraklis/running-hashcat-v4-0-0-in-amazons-aws-new-p3-16xlarge-instance-e8fab4541e9b
https://medium.com/@iraklis/running-hashcat-v4-0-0-in-amazons-aws-new-p3-16xlarge-instance-e8fab4541e9b
http://cyberlaw.stanford.edu/node/6592
https://cyberlaw.stanford.edu/blog/2011/09/tracking-trackers-self-help-tools
https://cyberlaw.stanford.edu/blog/2011/09/tracking-trackers-self-help-tools
https://cyberlaw.stanford.edu/blog/2011/10/tracking-trackers-where-everybody-knows-your-username
https://cyberlaw.stanford.edu/blog/2011/10/tracking-trackers-where-everybody-knows-your-username
http://webpolicy.org/2015/01/14/turn-verizon-zombie-cookie/
http://webpolicy.org/2015/01/14/turn-verizon-zombie-cookie/
http://webpolicy.org/2013/10/30/the-web-is-flat/
http://webpolicy.org/2013/10/30/the-web-is-flat/

[220] Jonathan R Mayer and John C Mitchell. Third-party web tracking: Policy and
technology. In Security and Privacy (S&P). IEEE, 2012.

[221] Johan Mazel, Richard Garnier, and Kensuke Fukuda. A comparison of web
privacy protection techniques. arXiv preprint arXiv:1712.06850, 2017.

[222] Aleecia M McDonald and Lorrie Faith Cranor. Americans’ attitudes about
internet behavioral advertising practices. In Proceedings of the 9th annual ACM
workshop on Privacy in the electronic society, pages 63–72. ACM, 2010.

[223] Aleecia M McDonald and Lorrie Faith Cranor. Survey of the use of Adobe
Flash Local Shared Objects to respawn HTTP cookies, a. ISJLP, 7, 2011.

[224] Mozilla Developer Network (MDN). Web Storage API. https://developer.

mozilla.org/en-US/docs/Web/API/Web_Storage_API.

[225] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar Weippl. Block me if you can: A
large-scale study of tracker-blocking tools. In Security and Privacy (EuroS&P),
2017 IEEE European Symposium on, pages 319–333. IEEE, 2017.

[226] Microsoft. Platform Status Suggestions. https://wpdev.uservoice.

com/forums/257854-microsoft-edge-developer/suggestions/6263689-

battery-status-api, 2012.

[227] Jakub Mikians, László Gyarmati, Vijay Erramilli, and Nikolaos Laoutaris. De-
tecting price and search discrimination on the internet. In Workshop on Hot
Topics in Networks. ACM, 2012.

[228] Najmeh Miramirkhani, Oleksii Starov, and Nick Nikiforakis. Dial one for scam:
A large-scale analysis of technical support scams. In Proceedings of the 24th
Network and Distributed System Security Symposium (NDSS 2017). Internet
Society, 2017.

[229] Nurie Mohamed. You deleted your cookies? think again. http://www.wired.

com/2009/08/you-deleted-your-cookies-think-again/, 2009.

[230] MonztA. (Comment) No boundaries: Exfiltration of personal data by
session-replay scripts. https://freedom-to-tinker.com/2017/11/15/

no-boundaries-exfiltration-of-personal-data-by-session-replay-

scripts/#comment-28428, 2017. Accessed: 2018-05-28.

[231] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. Finger-
printing information in JavaScript implementations. In Web 2.0 Workshop on
Security and Privacy (W2SP), volume 2. IEEE, 2011.

[232] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting canvas in
html5. Proceedings of W2SP, 2012.

227

https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/6263689-battery-status-api
https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/6263689-battery-status-api
https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/6263689-battery-status-api
http://www.wired.com/2009/08/you-deleted-your-cookies-think-again/
http://www.wired.com/2009/08/you-deleted-your-cookies-think-again/
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/#comment-28428
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/#comment-28428
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/#comment-28428

[233] Mozilla. Security/Fingerprinting. https://wiki.mozilla.org/Security/

Fingerprinting. Accessed: 2018-05-28.

[234] Mozilla. Firefox 10 for developers (release notes) . https://developer.

mozilla.org/en-US/Firefox/Releases/10, 2012.

[235] Mozilla. Firefox 52 for developers (release notes) . https://developer.

mozilla.org/en-US/Firefox/Releases/52#Others, 2017.

[236] Mozilla. Firefox 52 Release Notes. https://www.mozilla.org/en-US/

firefox/52.0/releasenotes/, 2017.

[237] Mozilla Developer Network. Mixed content - Security. https://developer.

mozilla.org/en-US/docs/Security/Mixed_content.

[238] Mozilla Support. Remote Content in Messages. https://support.mozilla.

org/en-US/kb/remote-content-in-messages. Online; accessed 2017-09-04.

[239] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian
Schrittwieser, Edgar Weippl, and FH Campus Wien. Fast and reliable browser
identification with JavaScript engine fingerprinting. In Web 2.0 Workshop on
Security and Privacy (W2SP), volume 1. IEEE, 2013.

[240] Steven J Murdoch and George Danezis. Low-cost traffic analysis of Tor. In
Security and Privacy (S&P). IEEE, 2005.

[241] Steven J Murdoch and Piotr Zieliński. Sampled Traffic Analysis by Internet-
Exchange-Level Adversaries. In Privacy Enhancing Technologies. Springer,
2007.

[242] Arvind Narayanan. There is no such thing as anonymous online
tracking. http://cyberlaw.stanford.edu/blog/2011/07/there-no-such-

thing-anonymous-online-tracking, 2011.

[243] Arvind Narayanan. RE: Docket No. 16-106, Protecting the Privacy of Cus-
tomers of Broadband and Other Telecommunication Services. https://

ecfsapi.fcc.gov/file/60002080817.pdf, 2016. Accessed: 2018-05-28.

[244] Christopher Neasbitt, Bo Li, Roberto Perdisci, Long Lu, Kapil Singh, and Kang
Li. Webcapsule: Towards a lightweight forensic engine for web browsers. In
Proceedings of CCS. ACM, 2015.

[245] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Privaricator: Deceiv-
ing fingerprinters with little white lies.

[246] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. Cookieless monster: Exploring the ecosys-
tem of web-based device fingerprinting. In Security and Privacy (S&P). IEEE,
2013.

228

https://wiki.mozilla.org/Security/Fingerprinting
https://wiki.mozilla.org/Security/Fingerprinting
https://developer.mozilla.org/en-US/Firefox/Releases/10
https://developer.mozilla.org/en-US/Firefox/Releases/10
https://developer.mozilla.org/en-US/Firefox/Releases/52#Others
https://developer.mozilla.org/en-US/Firefox/Releases/52#Others
https://www.mozilla.org/en-US/firefox/52.0/releasenotes/
https://www.mozilla.org/en-US/firefox/52.0/releasenotes/
https://developer.mozilla.org/en-US/docs/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Security/Mixed_content
https://support.mozilla.org/en-US/kb/remote-content-in-messages
https://support.mozilla.org/en-US/kb/remote-content-in-messages
http://cyberlaw.stanford.edu/blog/2011/07/there-no-such-thing-anonymous-online-tracking
http://cyberlaw.stanford.edu/blog/2011/07/there-no-such-thing-anonymous-online-tracking
https://ecfsapi.fcc.gov/file/60002080817.pdf
https://ecfsapi.fcc.gov/file/60002080817.pdf

[247] Mark Nottingham. Securing the Web. https://www.w3.org/2001/tag/doc/

web-https, 2015. Accessed: 2018-04-29.

[248] Mark Nottingham. Unsanctioned Web Tracking. https://www.w3.org/2001/

tag/doc/unsanctioned-tracking/, 2015.

[249] Andrew Odlyzko. Privacy, economics, and price discrimination on the Internet.
In ICEC2003: Fifth International Conference on Electronic Commerce, 2003.

[250] Office of Management and Budget (OMB). Use of Web Measurement and Cus-
tomization Technologies. https://www.treasury.gov/open/Documents/OMB%
20M-10-22%20Required%20Additions%20to%20the%20Privacy%20Policy.

pdf. Accessed: 2018-05-12.

[251] Office of the Directory of National Intelligence (DNI). Section
702 Overview. https://www.dni.gov/files/icotr/Section702-Basics-

Infographic.pdf. Accessed: 2018-05-13.

[252] Lukasz Olejnik. Bug 1124127 - Round Off Navigator Battery Level on Linux.
https://bugzilla.mozilla.org/show_bug.cgi?id=1124127, 2015.

[253] Lukasz Olejnik. Bug 1299454 - Round Off Ambient Light Sensor event.value .
https://bugzilla.mozilla.org/show_bug.cgi?id=1299454, 2016.

[254] Lukasz Olejnik. Issue 661792 - Battery API raises privacy issues. https:

//bugs.chromium.org/p/chromium/issues/detail?id=661792, 2016.

[255] Lukasz Olejnik. Issue 661792 - Battery API raises privacy issues. https:

//bugs.chromium.org/p/chromium/issues/detail?id=661792#c4, 2016.

[256] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. The leak-
ing battery. Cryptology ePrint Archive, Report 2015/616, 2015.

[257] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. The Leak-
ing Battery. Data Privacy Management, 2015.

[258] Lukasz Olejnik, Claude Castelluccia, et al. Selling off privacy at auction. In
NDSS ’14: The 2014 Network and Distributed System Security Symposium,
2014.

[259] Lukasz Olejnik, Claude Castelluccia, and Artur Janc. Why Johnny Can’t
Browse in Peace: On the Uniqueness of Web Browsing History Patterns. In
5th Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs
2012), Vigo, Spain, July 2012.

[260] Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan. Battery status
not included: Assessing privacy in web standards. In Proceedings of the 2017
International Workshop on Privacy Engineering (IWPE), 2017.

229

https://www.w3.org/2001/tag/doc/web-https
https://www.w3.org/2001/tag/doc/web-https
https://www.w3.org/2001/tag/doc/unsanctioned-tracking/
https://www.w3.org/2001/tag/doc/unsanctioned-tracking/
https://www.treasury.gov/open/Documents/OMB%20M-10-22%20Required%20Additions%20to%20the%20Privacy%20Policy.pdf
https://www.treasury.gov/open/Documents/OMB%20M-10-22%20Required%20Additions%20to%20the%20Privacy%20Policy.pdf
https://www.treasury.gov/open/Documents/OMB%20M-10-22%20Required%20Additions%20to%20the%20Privacy%20Policy.pdf
https://www.dni.gov/files/icotr/Section702-Basics-Infographic.pdf
https://www.dni.gov/files/icotr/Section702-Basics-Infographic.pdf
https://bugzilla.mozilla.org/show_bug.cgi?id=1124127
https://bugzilla.mozilla.org/show_bug.cgi?id=1299454
https://bugs.chromium.org/p/chromium/issues/detail?id=661792
https://bugs.chromium.org/p/chromium/issues/detail?id=661792
https://bugs.chromium.org/p/chromium/issues/detail?id=661792#c4
https://bugs.chromium.org/p/chromium/issues/detail?id=661792#c4

[261] Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan. Battery status not
included: Assessing privacy in web standards. In Workshop on Hot Topics in
Privacy Enhancing Technologies (HotPETs), 2017.

[262] Lukasz Olejnik, Tran Minh-Dung, Claude Castelluccia, et al. Selling Off Privacy
at Auction. 2013.

[263] Olejnik, Lukasz. Issue 642731. Round Off Ambient. Light Sensor event.value.
https://bugs.chromium.org/p/chromium/issues/detail?id=642731, 2016.

[264] Opera. Opera 26 Release Notes. https://www.opera.com/docs/changelogs/
unified/2600/, 2014.

[265] Rebekah Overdorf, Mark Juarez, Gunes Acar, Rachel Greenstadt, and Claudia
Diaz. How unique is your. onion?: An analysis of the fingerprintability of
tor onion services. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2021–2036. ACM, 2017.

[266] Ramakrishna Padmanabhan, Amogh Dhamdhere, Emile Aben, Neil Spring,
et al. Reasons dynamic addresses change. In Proceedings of the 2016 Internet
Measurement Conference, pages 183–198. ACM, 2016.

[267] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Web-
site Fingerprinting in Onion Routing Based Anonymization Networks. In Work-
shop on Privacy in the Electronic Society (WPES). ACM, 2011.

[268] Ian Paul. How to automatically delete your cookies every time you close
your browser. https://www.pcworld.com/article/2846020/how-to-

automatically-delete-your-cookies-every-time-you-close-your-

browser.html, 2014. [Online; accessed 2018-02-11].

[269] Mike Perry. Determine if AudioBuffers/OfflineAudioContext are a fingerprint-
ing vector. https://trac.torproject.org/projects/tor/ticket/13017.
Accessed: 2018-05-28.

[270] Mike Perry, Erinn Clark, and Steven Murdoch. The design and implementa-
tion of the Tor browser [DRAFT]. https://www.torproject.org/projects/
torbrowser/design, November 2014.

[271] Chris Peterson. Bug 1313580 - Remove web content access to Battery API.
https://bugzilla.mozilla.org/show_bug.cgi?id=1313580, 2016.

[272] Phantom JS. Supported web standards. http://www.webcitation.org/

6hI3iptm5, 2016.

[273] Privacy and Civil Liberties Oversight Board (PCLOB). Report on the Surveil-
lance Program Operated Pursuant to Section 702 of the Foreign Intelligence
Surveillance Act. https://www.pclob.gov/library/702-Report.pdf, 2014.
Accessed: 2018-05-13.

230

https://bugs.chromium.org/p/chromium/issues/detail?id=642731
https://www.opera.com/docs/changelogs/unified/2600/
https://www.opera.com/docs/changelogs/unified/2600/
https://www.pcworld.com/article/2846020/how-to-automatically-delete-your-cookies-every-time-you-close-your-browser.html
https://www.pcworld.com/article/2846020/how-to-automatically-delete-your-cookies-every-time-you-close-your-browser.html
https://www.pcworld.com/article/2846020/how-to-automatically-delete-your-cookies-every-time-you-close-your-browser.html
https://trac.torproject.org/projects/tor/ticket/13017
https://www.torproject.org/projects/torbrowser/design
https://www.torproject.org/projects/torbrowser/design
https://bugzilla.mozilla.org/show_bug.cgi?id=1313580
http://www.webcitation.org/6hI3iptm5
http://www.webcitation.org/6hI3iptm5
https://www.pclob.gov/library/702-Report.pdf

[274] Alison DeNisco Rayome. 65% of organizations will fail to meet critical GDPR
compliance by deadline. https://www.techrepublic.com/article/65-

of-organizations-will-fail-to-meet-critical-gdpr-compliance-by-

deadline/, 2018. Accessed: 2018-05-28.

[275] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Mark Allman, Christian Kreibich, and Phillipa Gill. Apps, track-
ers, privacy, and regulators: A global study of the mobile tracking ecosystem.
2018.

[276] Andrew Reed and Michael Kranch. Identifying https-protected netflix videos
in real-time. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, pages 361–368. ACM, 2017.

[277] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David
Choffnes. Recon: Revealing and controlling pii leaks in mobile network traffic.
In Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, pages 361–374. ACM, 2016.

[278] Philipp Richter, Florian Wohlfart, Narseo Vallina-Rodriguez, Mark Allman,
Randy Bush, Anja Feldmann, Christian Kreibich, Nicholas Weaver, and Vern
Paxson. A multi-perspective analysis of carrier-grade nat deployment. In Pro-
ceedings of the 2016 Internet Measurement Conference, IMC ’16, pages 215–229,
New York, NY, USA, 2016. ACM.

[279] Nicky Robinson and Joseph Bonneau. Cognitive disconnect: Understanding
Facebook Connect login permissions. In 2nd ACM conference on Online social
networks. ACM, 2014.

[280] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting and
Defending Against Third-Party Tracking on the Web. In Symposium on Net-
working Systems Design and Implementation. USENIX, 2012.

[281] Jonathan Rosenberg and Henning Schulzrinne. An Offer/Answer Model with
the Session Description Protocol (SDP). https://tools.ietf.org/html/

rfc3264.

[282] Sonam Samat, Alessandro Acquisti, and Linda Babcock. Raise the curtains:
The effect of awareness about targeting on consumer attitudes and purchase
intentions. In Thirteenth Symposium on Usable Privacy and Security (SOUPS
2017), pages 299–319. USENIX Association, 2017.

[283] Emily Schechter. Moving towards a more secure web. https://security.

googleblog.com/2016/09/moving-towards-more-secure-web.html, 2016.
Accessed: 2018-04-29.

[284] Emily Schechter. A secure web is here to stay. https://security.

googleblog.com/2018/02/a-secure-web-is-here-to-stay.html, 2018. Ac-
cessed: 2018-06-03.

231

https://www.techrepublic.com/article/65-of-organizations-will-fail-to-meet-critical-gdpr-compliance-by-deadline/
https://www.techrepublic.com/article/65-of-organizations-will-fail-to-meet-critical-gdpr-compliance-by-deadline/
https://www.techrepublic.com/article/65-of-organizations-will-fail-to-meet-critical-gdpr-compliance-by-deadline/
https://tools.ietf.org/html/rfc3264
https://tools.ietf.org/html/rfc3264
https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://security.googleblog.com/2018/02/a-secure-web-is-here-to-stay.html
https://security.googleblog.com/2018/02/a-secure-web-is-here-to-stay.html

[285] Sebastian Schelter and Jérôme Kunegis. On the ubiquity of web tracking: In-
sights from a billion-page web crawl. arXiv preprint arXiv:1607.07403, 2016.

[286] Steven Schmeiser. Sharing audience data: Strategic participation in behavioral
advertising networks. Review of Industrial Organization, pages 1–22, 2015.

[287] Steven Schmeiser. Online advertising networks and consumer perceptions of
privacy. Applied Economics Letters, pages 1–5, 2017.

[288] scikit-learn. Jaccard Similarity Score. http://scikit-learn.org/stable/

modules/generated/sklearn.metrics.jaccard_similarity_score.html.
Online; accessed 2017-09-05.

[289] Ory Segal, Aharon Fridman, and Elad Shuster. Passive Fingerprinting of
HTTP/2 Clients. https://www.akamai.com/uk/en/multimedia/documents/

white-paper/passive-fingerprinting-of-http2-clients-white-paper.

pdf, 2017. [Online; accessed 2018-02-11].

[290] Selenium Browser Automation. Selenium faq. https://code.google.com/p/

selenium/wiki/FrequentlyAskedQuestions, 2014.

[291] Suranga Seneviratne, Harini Kolamunna, and Aruna Seneviratne. A measure-
ment study of tracking in paid mobile applications. In Proceedings of the 8th
ACM Conference on Security & Privacy in Wireless and Mobile Networks,
WiSec ’15, pages 7:1–7:6, New York, NY, USA, 2015. ACM.

[292] SessionCam. What information do we collect for our clients?
https://web.archive.org/web/20171115050443/https://sessioncam.

com/privacy-policy-cookies/, 2017. Accessed: 2018-05-09.

[293] Ryan Singel. Online Tracking Firm Settles Suit Over Undeletable Cookies.
http://www.wired.com/2010/12/zombie-cookie-settlement/, 2010.

[294] Kapil Singh, Alexander Moshchuk, Helen J Wang, and Wenke Lee. On the
incoherencies in web browser access control policies. In Proceedings of S&P.
IEEE, 2010.

[295] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and Chris Jay
Hoofnagle. Flash cookies and privacy. In AAAI Spring Symposium: Intelligent
Information Privacy Management, 2010.

[296] Ashkan Soltani, Andrea Peterson, and Barton Gellman. NSA uses Google
cookies to pinpoint targets for hacking. http://www.washingtonpost.

com/blogs/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-

pinpoint-targets-for-hacking, December 2013.

[297] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing Analysis of
Keystrokes and Timing Attacks on SSH. In Security Symposium. USENIX,
2001.

232

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_similarity_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_similarity_score.html
https://www.akamai.com/uk/en/multimedia/documents/white-paper/passive-fingerprinting-of-http2-clients-white-paper.pdf
https://www.akamai.com/uk/en/multimedia/documents/white-paper/passive-fingerprinting-of-http2-clients-white-paper.pdf
https://www.akamai.com/uk/en/multimedia/documents/white-paper/passive-fingerprinting-of-http2-clients-white-paper.pdf
https://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions
https://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions
https://web.archive.org/web/20171115050443/https://sessioncam.com/privacy-policy-cookies/
https://web.archive.org/web/20171115050443/https://sessioncam.com/privacy-policy-cookies/
http://www.wired.com/2010/12/zombie-cookie-settlement/
http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking
http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking
http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking

[298] Aditya K Sood and Richard J Enbody. Malvertising–exploiting web advertising.
Computer Fraud & Security, 2011(4):11–16, 2011.

[299] Ove Sorensen. Zombie-cookies: Case studies and mitigation. In Internet Tech-
nology and Secured Transactions (ICITST), pages 321–326. IEEE, 2013.

[300] Jan Spooren, Davy Preuveneers, and Wouter Joosen. Leveraging battery usage
from mobile devices for active authentication. 2017.

[301] Oleksii Starov, Johannes Dahse, Syed Sharique Ahmad, Thorsten Holz, and
Nick Nikiforakis. No honor among thieves: A large-scale analysis of malicious
web shells. In International Conference on World Wide Web, 2016.

[302] Oleksii Starov, Phillipa Gill, and Nick Nikiforakis. Are you sure you want to
contact us? quantifying the leakage of pii via website contact forms. Proceedings
on Privacy Enhancing Technologies, 2016(1):20–33, 2016.

[303] Oleksii Starov and Nick Nikiforakis. Extended tracking powers: Measuring the
privacy diffusion enabled by browser extensions. In Proceedings of the 26th
International Conference on World Wide Web, pages 1481–1490. International
World Wide Web Conferences Steering Committee, 2017.

[304] Mark Stockley. Anatomy of a browser dilemma how HSTS supercookies
make you choose between privacy or security. https://nakedsecurity.

sophos.com/2015/02/02/anatomy-of-a-browser-dilemma-how-hsts-

supercookies-make-you-choose-between-privacy-or-security/, 2015.
[Online; accessed 2018-02-11].

[305] Jessica Su, Ansh Shukla, Sharad Goel, and Arvind Narayanan. De-anonymizing
web browsing data with social networks. In Proceedings of the 26th International
Conference on World Wide Web, pages 1261–1269. International World Wide
Web Conferences Steering Committee, 2017.

[306] Mozilla Support. Disable third-party cookies in Firefox to stop some types of
tracking by advertisers. https://support.mozilla.org/en-US/kb/disable-
third-party-cookies. Accessed: 2018-06-22.

[307] tc39. Draft Proposed Frozen Realm API. https://github.com/tc39/

proposal-frozen-realms. Accessed: 2018-06-03.

[308] The Guardian. ‘Tor Stinks’ presentation - read the full docu-
ment. http://www.theguardian.com/world/interactive/2013/oct/04/

tor-stinks-nsa-presentation-document, October 2013.

[309] Zack Tollman. We’re Going HTTPS: Here’s How WIRED Is Tackling a Huge
Security Upgrade. https://www.wired.com/2016/04/wired-launching-

https-security-upgrade/, 2016.

233

https://nakedsecurity.sophos.com/2015/02/02/anatomy-of-a-browser-dilemma-how-hsts-supercookies-make-you-choose-between-privacy-or-security/
https://nakedsecurity.sophos.com/2015/02/02/anatomy-of-a-browser-dilemma-how-hsts-supercookies-make-you-choose-between-privacy-or-security/
https://nakedsecurity.sophos.com/2015/02/02/anatomy-of-a-browser-dilemma-how-hsts-supercookies-make-you-choose-between-privacy-or-security/
https://support.mozilla.org/en-US/kb/disable-third-party-cookies
https://support.mozilla.org/en-US/kb/disable-third-party-cookies
https://github.com/tc39/proposal-frozen-realms
https://github.com/tc39/proposal-frozen-realms
http://www.theguardian.com/world/interactive/2013/oct/04/tor-stinks-nsa-presentation-document
http://www.theguardian.com/world/interactive/2013/oct/04/tor-stinks-nsa-presentation-document
https://www.wired.com/2016/04/wired-launching-https-security-upgrade/
https://www.wired.com/2016/04/wired-launching-https-security-upgrade/

[310] Anthony Tseng. Disable password autofill on page load. https://github.com/
brave/browser-laptop/issues/12489, 2018. Accessed: 2018-05-28.

[311] Joseph Turow, Lauren Feldman, and Kimberly Meltzer. Open to exploitation:
America’s shoppers online and offline. Departmental Papers (ASC), page 35,
2005.

[312] Joseph Turow, Jennifer King, Chris Jay Hoofnatle, Amy Bleakley, and Michael
Hennessy. Americans reject tailored advertising and three activities that enable
it. Departmental Papers (ASC), 2009.

[313] Justin Uberti. New proposal for IP address handling in WebRTC. https:

//www.ietf.org/mail-archive/web/rtcweb/current/msg14494.html.

[314] Justin Uberti and Guo wei Shieh. WebRTC IP Address Handling Recom-
mendations. https://datatracker.ietf.org/doc/draft-ietf-rtcweb-ip-

handling/.

[315] Thomas Unger, Martin Mulazzani, Dominik Fruhwirt, Markus Huber, Sebas-
tian Schrittwieser, and Edgar Weippl. SHPF: Enhancing HTTP(S) Session
Security with Browser Fingerprinting. In Availability, Reliability and Security
(ARES), pages 255–261. IEEE, 2013.

[316] Blase Ur, Pedro Giovanni Leon, Lorrie Faith Cranor, Richard Shay, and Yang
Wang. Smart, useful, scary, creepy: perceptions of online behavioral advertising.
In Eighth Symposium on Usable Privacy and Security. ACM, 2012.

[317] Jennifer Valentino-Devries, Jeremy Singer-Vine, and Ashkan Soltani.
What they know. http://online.wsj.com/public/page/what-they-know-

digital-privacy.html, 2012.

[318] Narseo Vallina-Rodriguez, Christian Kreibich, Mark Allman, and Vern Paxson.
Lumen: Fine-grained visibility and control of mobile traffic in user-space. 2017.

[319] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian Kreibich, and Vern
Paxson. Header enrichment or isp enrichment?: Emerging privacy threats in
mobile networks. In Proceedings of the 2015 ACM SIGCOMM Workshop on
Hot Topics in Middleboxes and Network Function Virtualization, pages 25–30.
ACM, 2015.

[320] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Abbas Razaghpanah, Rishab
Nithyanand, Mark Allman, Christian Kreibich, and Phillipa Gill. Tracking the
trackers: Towards understanding the mobile advertising and tracking ecosys-
tem. In 1st Data and Algorithm Transparency (DAT) Workshop, 2016.

[321] Steven Van Acker and Andrei Sabelfeld. Javascript sandboxing: Isolating and
restricting client-side javascript. In Foundations of Security Analysis and Design
VIII, pages 32–86. Springer, 2015.

234

https://github.com/brave/browser-laptop/issues/12489
https://github.com/brave/browser-laptop/issues/12489
https://www.ietf.org/mail-archive/web/rtcweb/current/msg14494.html
https://www.ietf.org/mail-archive/web/rtcweb/current/msg14494.html
https://datatracker.ietf.org/doc/draft-ietf-rtcweb-ip-handling/
https://datatracker.ietf.org/doc/draft-ietf-rtcweb-ip-handling/
http://online.wsj.com/public/page/what-they-know-digital-privacy.html
http://online.wsj.com/public/page/what-they-know-digital-privacy.html

[322] Anne van Kesteren. Secure Contexts Everywhere. https://blog.mozilla.

org/security/2018/01/15/secure-contexts-everywhere/, 2018. Accessed:
2018-05-09.

[323] Eline Vanrykel, Gunes Acar, Michael Herrmann, and Claudia Diaz. Leaky
birds: Exploiting mobile application traffic for surveillance. In Jens Grossklags
and Bart Preneel, editors, Financial Cryptography and Data Security. Springer
Berlin Heidelberg, 2017.

[324] Thomas Vissers, Nick Nikiforakis, Nataliia Bielova, and Wouter Joosen. Crying
wolf? on the price discrimination of online airline tickets. HotPETS, 2014.

[325] Tim Volodine. Issue 1229143006: Enforce restricted precision of the Battery
Status API level attribute (Closed) . https://codereview.chromium.org/

1229143006, 2015.

[326] Tanvi Vyas, Andrea Marchesini, and Christoph Kerschbaumer. Extending the
same origin policy with origin attributes. In 3rd International Conference on
Information Systems Security and Privacy, pages 464–473, 01 2017.

[327] W3C. 4.10 Forms - HTML5. https://www.w3.org/TR/html5/forms.html.
Online; accessed 2017-09-07.

[328] W3C. Indexed Database API 2.0. https://www.w3.org/TR/IndexedDB-2/.

[329] W3C. WebVR. https://w3c.github.io/webvr/spec/1.1/, 2017.

[330] Kent Walker. Supporting election integrity through greater advertising trans-
parency. https://www.blog.google/topics/public-policy/supporting-

election-integrity-through-greater-advertising-transparency/,
2018.

[331] Will Van Wazer. Moving the Washington Post to HTTPS. https:

//developer.washingtonpost.com/pb/blog/post/2015/12/10/moving-

the-washington-post-to-https/, 2015.

[332] Web Bluetooth Community Group. Web Bluetooth API. https://

webbluetoothcg.github.io/web-bluetooth/, 2017.

[333] WebKit. Changeset 110991. Support for Battery Status API. https://trac.

webkit.org/changeset/110991, 2012.

[334] Mike West. Self-Review Questionnaire: Security and Privacy. https://w3ctag.
github.io/security-questionnaire/, 2015. Accessed: 25.10.15.

[335] Mike West. Referrer Policy – W3C Candidate Recommendation. https://

www.w3.org/TR/credential-management-1/, 2017. Accessed: 2018-05-09.

[336] Mike West. Cookies-over-HTTP Bad. https://github.com/mikewest/

cookies-over-http-bad, 2018. Accessed: 2018-05-09.

235

https://blog.mozilla.org/security/2018/01/15/secure-contexts-everywhere/
https://blog.mozilla.org/security/2018/01/15/secure-contexts-everywhere/
https://codereview.chromium.org/1229143006
https://codereview.chromium.org/1229143006
https://www.w3.org/TR/html5/forms.html
https://www.w3.org/TR/IndexedDB-2/
https://w3c.github.io/webvr/spec/1.1/
https://www.blog.google/topics/public-policy/supporting-election-integrity-through-greater-advertising-transparency/
https://www.blog.google/topics/public-policy/supporting-election-integrity-through-greater-advertising-transparency/
https://developer.washingtonpost.com/pb/blog/post/2015/12/10/moving-the-washington-post-to-https/
https://developer.washingtonpost.com/pb/blog/post/2015/12/10/moving-the-washington-post-to-https/
https://developer.washingtonpost.com/pb/blog/post/2015/12/10/moving-the-washington-post-to-https/
https://webbluetoothcg.github.io/web-bluetooth/
https://webbluetoothcg.github.io/web-bluetooth/
https://trac.webkit.org/changeset/110991
https://trac.webkit.org/changeset/110991
https://w3ctag.github.io/security-questionnaire/
https://w3ctag.github.io/security-questionnaire/
https://www.w3.org/TR/credential-management-1/
https://www.w3.org/TR/credential-management-1/
https://github.com/mikewest/cookies-over-http-bad
https://github.com/mikewest/cookies-over-http-bad

[337] WHATWG. HTML Living Standard — iframe sandbox attributes.
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#

attr-iframe-sandbox.

[338] Andrew M White, Austin R Matthews, Kevin Z Snow, and Fabian Monrose.
Phonotactic reconstruction of encrypted VoIP conversations: Hookt on fon-iks.
In Security and Privacy (S&P). IEEE, 2011.

[339] John Wilander. Intelligent Tracking Prevention. https://webkit.org/blog/

7675/intelligent-tracking-prevention/, 2017. [Online; accessed 2018-02-
11].

[340] Xinyu Xing, Wei Meng, Dan Doozan, Nick Feamster, Wenke Lee, and Alex C
Snoeren. Exposing inconsistent web search results with bobble. In Passive and
Active Measurement, pages 131–140. Springer, 2014.

[341] Yahoo Help. Block images in your incoming Yahoo Mail emails. https://

help.yahoo.com/kb/SLN5043.html. Online; accessed 2017-09-06.

[342] Jun Yan, Ning Liu, Gang Wang, Wen Zhang, Yun Jiang, and Zheng Chen. How
much can behavioral targeting help online advertising? In Proceedings of the
18th international conference on World wide web, pages 261–270. ACM, 2009.

[343] Yandex Browser Blog. Beware Evil APIs . https://browser.yandex.com/

blog/beware-evil-apis, 2016.

[344] Yaxing Yao, Davide Lo Re, and Yang Wang. Folk models of online behavioral
advertising. In CSCW, pages 1957–1969, 2017.

[345] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martın Abadi.
Host fingerprinting and tracking on the web: Privacy and security implications.
In Network and Distributed System Security Symposium (NDSS). IEEE, 2012.

[346] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M Pujol. Tracking
the trackers. In Proceedings of the 25th International Conference on World
Wide Web, pages 121–132. International World Wide Web Conferences Steering
Committee, 2016.

[347] Michal Zalewski. Rapid history extraction through non-destructive cache timing
(v8). http://lcamtuf.coredump.cx/cachetime/. Accessed: 2014.

[348] Jinyan Zang, Krysta Dummit, James Graves, Paul Lisker, and Latanya
Sweeney. Who knows what about me? a survey of behind the scenes per-
sonal data sharing to third parties by mobile apps. Technology Science, 30,
2015.

[349] Yan Zhu. Fingerprinting Protection Mode. https://github.com/brave/

browser-laptop/wiki/Fingerprinting-Protection-Mode, 2018. Accessed:
2018-05-28.

236

https://html.spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe-sandbox
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe-sandbox
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://help.yahoo.com/kb/SLN5043.html
https://help.yahoo.com/kb/SLN5043.html
https://browser.yandex.com/blog/beware-evil-apis
https://browser.yandex.com/blog/beware-evil-apis
http://lcamtuf.coredump.cx/cachetime/
https://github.com/brave/browser-laptop/wiki/Fingerprinting-Protection-Mode
https://github.com/brave/browser-laptop/wiki/Fingerprinting-Protection-Mode

[350] Yan Zhu and Mike West. Secure Contexts. https://www.w3.org/TR/secure-
contexts/, 2016.

[351] Sebastian Zimmeck, Jie S Li, Hyungtae Kim, Steven M Bellovin, and Tony
Jebara. A privacy analysis of cross-device tracking. In Proceedings of the 26th
USENIX Security Symposium, 2017.

237

https://www.w3.org/TR/secure-contexts/
https://www.w3.org/TR/secure-contexts/

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Overview
	1.2 Contributions
	1.2.1 OpenWPM: a web measurement platform
	1.2.2 The state of web tracking
	1.2.3 Measuring device fingerprinting
	1.2.4 PII collection and use by trackers
	1.2.5 The surveillance implications of web tracking

	1.3 Structure

	2 Background and related work
	2.1 Third-party web tracking
	2.1.1 Stateful web tracking
	2.1.2 Stateless tracking
	2.1.3 Cookie syncing
	2.1.4 Personally Identifiable Information (PII) leakage
	2.1.5 Cross-device tracking
	2.1.6 Tracking in emails

	2.2 The role of web tracking in government surveillance
	2.2.1 NSA and GCHQ use of third-party cookies
	2.2.2 United States Internet monitoring
	2.2.3 Surveillance: attacks, defenses, and measurement

	2.3 The state of privacy review in web standards
	2.3.1 The W3C standardization process
	2.3.2 W3C privacy assessment practices and requirements
	2.3.3 Past privacy assessment research

	3 OpenWPM: A web measurement platform
	3.1 The design of OpenWPM
	3.1.1 Previous web tracking measurement platforms
	3.1.2 Design and Implementation
	3.1.3 Evaluation
	3.1.4 Applications of OpenWPM

	3.2 Core web privacy measurement methods
	3.2.1 Distinguishing third-party from first-party content
	3.2.2 Identifying trackers
	3.2.3 Browsing Models
	3.2.4 Detecting User IDs
	3.2.5 Detecting PII Leakage
	3.2.6 Measuring Javascript calls

	4 Web tracking is ubiquitous
	4.1 A 1-million-site census of online tracking
	4.1.1 Measurement configuration
	4.1.2 Measuring stateful tracking at scale
	4.1.3 The long but thin tail of online tracking
	4.1.4 Prominence: a third party ranking metric
	4.1.5 News sites have the most trackers
	4.1.6 Does tracking protection work?

	4.2 Measuring Cookie Respawning
	4.2.1 Flash cookies respawning HTTP cookies
	4.2.2 HTTP cookies respawning Flash cookies

	4.3 Measuring Cookie Syncing
	4.3.1 Detecting cookie synchronization
	4.3.2 Measurement configuration
	4.3.3 Cookie syncing is widespread on the top sites
	4.3.4 Back-end database synchronization
	4.3.5 Cookie syncing amplifies bad actors
	4.3.6 Opt-out doesn't help
	4.3.7 Nearly all of the top third parties cookie sync

	4.4 Summary

	5 Persistent tracking with device fingerprinting
	5.1 Fingerprinting: a 1-Million site view
	5.1.1 Measurement configuration
	5.1.2 Canvas Fingerprinting
	5.1.3 Canvas Font Fingerprinting
	5.1.4 WebRTC-based fingerprinting
	5.1.5 AudioContext Fingerprinting
	5.1.6 Battery Status API Fingerprinting
	5.1.7 The wild west of fingerprinting scripts

	5.2 Case study: the Battery Status API
	5.2.1 The timeline of specification and adoption
	5.2.2 Use and misuse of the API in the wild
	5.2.3 Lessons Learned & Recommendations

	5.3 Summary

	6 Third-party trackers collect PII
	6.1 Trackers collect PII in emails
	6.1.1 Collecting a dataset of emails
	6.1.2 Measurement methods
	6.1.3 Privacy leaks when viewing emails
	6.1.4 Privacy leaks when clicking links in emails
	6.1.5 Evaluation of email tracking defenses
	6.1.6 Survey of tracking prevention in email clients
	6.1.7 Our proposed defense against email tracking
	6.1.8 Limitations

	6.2 Trackers collect PII on the web
	6.2.1 Measurement configuration
	6.2.2 Measurement methods
	6.2.3 Browser login managers are vulnerable to abuse
	6.2.4 Third-party collection of PII through DOM scraping
	6.2.5 Countermeasures to PII collection

	6.3 The ineffectiveness of hashing for privacy
	6.4 Summary

	7 The surveillance implications of web tracking
	7.1 Threat model
	7.2 Measurement methods
	7.2.1 Browsing models
	7.2.2 Measurement configuration
	7.2.3 HTTP Traffic geolocation
	7.2.4 Transitive Cookie Linking
	7.2.5 Identity leakage in popular websites

	7.3 Network adversaries can effectively cluster traffic
	7.3.1 Clustering
	7.3.2 U.S. Users Under One-End Foreign
	7.3.3 Cookie Linking in Non-U.S. Traffic
	7.3.4 Cookie Linking Under Blocking Tools
	7.3.5 Identity Leakage

	7.4 Third parties impede HTTPS adoption
	7.5 Discussion
	7.5.1 Extending the attack: linking without IP address
	7.5.2 Limitations

	7.6 Summary

	8 Conclusion
	A Appendix
	A.1 Landing page detection from HTTP data
	A.2 Leak detection: encodings and hashes
	A.3 List of HTTP Respawning Scripts
	A.4 Fingerprinting script lists
	A.5 OpenWPM mailing list form discovery method
	A.6 Mixed content detection in HTTP data
	A.7 Content types for resources which caused mixed content errors.
	A.8 Scripts exfiltrating information from browser login managers.

	Bibliography

